We investigated how the taxonomic and functional structures of fish assemblages in the lower Amazon River floodplain responded to seasonal hydrological variations. Fishes were sampled in 440 aquatic habitats across a floodplain area of 17,673 km2during periods of high, receding, low and rising water. In addition, we recorded local environmental and landscape variables known to affect fish assemblages in floodplains. Redundancy analysis indicated that the taxonomic and functional structures of the fish assemblages were associated with water levels as well as local environmental, landscape and spatial variables. Our results showed that piscivores, planktivores and omnivores, as well as species with periodic and intermediate life history strategies, dominated the floodplain fish assemblages during periods of high‐water levels, whereas herbivores, invertivores and detritivores, as well as species of large body size with an equilibrium life history strategy, dominated the fish assemblages during periods of low‐water levels. Hydrology strongly influenced the structure of the fish assemblages in the Amazon floodplains. Our results indicate that the maintenance of seasonal hydrological dynamics in the basin is essential for the conservation of the regional fish diversity.
- Award ID(s):
- 1536165
- PAR ID:
- 10249934
- Editor(s):
- Grosell, Martin; Munday, Philip L.; Farrell, Anthony P.; Brauner, Colin J.
- Date Published:
- Journal Name:
- Fish physiology
- Volume:
- 37
- ISSN:
- 1557-8011
- Page Range / eLocation ID:
- 369-395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Amazonian birds in more dynamic habitats have less population genetic structure and higher gene flow
Abstract Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome‐wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual‐level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long‐term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat‐specific diversification dynamics over evolutionary time scales.
-
Abstract Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR = aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b ≈ 1). Moreover, I show that within-individual b can vary much more widely than previously assumed from work on different individuals or different species, from –1 to 1 for SMR among individual brown trout. The negative scaling of SMR for some individuals was caused by reductions in metabolic rate in a food limited environment, likely to maintain positive growth. This resulted in a mean within-individual b for SMR that was significantly lower than the across-individual (“static”) b, a difference that also existed for another species, cunner (Tautogolabrus adspersus). Interestingly, the wide variation in ontogenetic b for SMR among individual brown trout did not exist for maximum (active) metabolic rate (MMR) of the same fish, showing that these two key metabolic traits (SMR and MMR) can scale independently of one another. I also show that across-species (“evolutionary”) b for SMR of 134 fishes is significantly steeper (b approaching 1) than the mean ontogenetic b for the brown trout and cunner. Based on these interesting findings, I hypothesise that evolutionary and static metabolic scaling can be systematically different from ontogenetic scaling, and that the steeper evolutionary than ontogenetic scaling for fishes arises as a by-product of natural selection for fast-growing individuals with steep metabolic scaling (b ≈ 1) early in life, where size-selective mortality is high for fishes. I support this by showing that b for SMR tends to increase with natural mortality rates of fish larvae within taxa.more » « less
-
Browman, Howard (Ed.)Abstract Experiments examining fish sensitivities to future oceanic CO2 levels have greatly expanded over past decades and identified many potentially affected traits. Curiously, data on reproductive trait responses to high CO2 are still scarce, despite their strong link to Darwinian fitness and thus to population vulnerability to ocean acidification. We conducted two rearing experiments on the first broadcast-spawning marine fish model (Atlantic silverside, Menidia menidia) to examine how long-term and novel whole life-cycle exposures to predicted future CO2 levels (∼2,000 µatm) affect laboratory spawning, temperature-specific reproductive investment, fecundity, and size distributions of maturing oocytes. At low temperatures (17°C), female body size and therefore potential fecundity (FPot, oocytes/female) slightly increased with CO2, while relative fecundity (FRel, oocytes/g female) remained unaffected. At high temperatures (24°C), high CO2 substantially reduced both FPot (−19%) and FRel (−28%) relative to control treatments. Irrespective of CO2, females at 24°C grew larger and heavier than those at 17°C, and although larger females produced larger oocytes at some developmental stages, they also had lower gonadosomatic indices and lower FRel. Our findings contrast with most previous studies and thus highlight the need to investigate reproductive impacts of increasing CO2 on multiple fish species with contrasting life history strategies.more » « less
-
Abstract Evolutionary change begins at the population scale. Therefore, understanding adaptive variation requires the identification of the factors maintaining and shaping standing genetic variation at the within‐population level. Spatial and temporal environmental heterogeneity represent ecological drivers of within‐population genetic variation, determining the evolutionary trajectory of populations along with random processes. Here, we focused on the effects of spatiotemporal heterogeneity on quantitative and molecular variation in a natural population of the annual plant Arabidopsis thaliana . We sampled 1093 individuals from a Spanish A. thaliana population across an area of 7.4 ha for 10 years (2012–2021). Based on a sample of 279 maternal lines, we estimated spatiotemporal variation in life‐history traits and fitness from a common garden experiment. We genotyped 884 individuals with nuclear microsatellites to estimate spatiotemporal variation in genetic diversity. We assessed spatial patterns by estimating spatial autocorrelation of traits and fine‐scale genetic structure. We analysed the relationships between phenotypic variation, geographical location and genetic relatedness, as well as the effects of environmental suitability and genetic rarity on phenotypic variation. The common garden experiment indicated that there was more temporal than spatial variation in life‐history traits and fitness. Despite the differences among years, genetic distance in ecologically relevant traits (e.g. flowering time) tended to be positively correlated to genetic distance among maternal lines, while isolation by distance was less important. Genetic diversity exhibited significant spatial structure at short distances, which were consistent among years. Finally, genetic rarity, and not environmental suitability, accounted for genetic variation in life‐history traits. Synthesis . Our study highlighted the importance of repeated sampling to detect the large amount of genetic diversity at the quantitative and molecular levels that a single A. thaliana population can harbour. Overall, population genetic attributes estimated from our long‐term monitoring scheme (genetic relatedness and genetic rarity), rather than biological (dispersal) or ecological (vegetation types and environmental suitability) factors, emerged as the most important drivers of within‐population structure of phenotypic variation in A. thaliana .more » « less