skip to main content


Search for: All records

Award ID contains: 1536165

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Coastal ecosystems experience substantial natural fluctuations in p CO 2 and dissolved oxygen (DO) conditions on diel, tidal, seasonal and interannual timescales. Rising carbon dioxide emissions and anthropogenic nutrient input are expected to increase these p CO 2 and DO cycles in severity and duration of acidification and hypoxia. How coastal marine organisms respond to natural p CO 2  × DO variability and future climate change remains largely unknown. Here, we assess the impact of static and cycling p CO 2  × DO conditions of various magnitudes and frequencies on early life survival and growth of an important coastal forage fish, Menidia menidia . Static low DO conditions severely decreased embryo survival, larval survival, time to 50% hatch, size at hatch and post-larval growth rates. Static elevated p CO 2 did not affect most response traits, however, a synergistic negative effect did occur on embryo survival under hypoxic conditions (3.0 mg L −1 ). Cycling p CO 2  × DO, however, reduced these negative effects of static conditions on all response traits with the magnitude of fluctuations influencing the extent of this reduction. This indicates that fluctuations in p CO 2 and DO may benefit coastal organisms by providing periodic physiological refuge from stressful conditions, which could promote species adaptability to climate change. 
    more » « less
  2. Grosell, Martin ; Munday, Philip L. ; Farrell, Anthony P. ; Brauner, Colin J. (Ed.)
    The evolutionary history of fishes spans geological periods where atmospheric CO2 was much higher than the current-day, yet some extant species are now sensitive to high environmental CO2. Other species have adapted to live in habitats where they naturally encounter very high CO2 levels. This chapter explores the evolutionary history of fishes in relation to environmental CO2 and adaptations to high CO2 habitats. It then considers the potential for adaptive responses to predicted future CO2 levels from climate change among extant fishes. Despite a rich theory and well-developed experimental methods in quantitative genetics only a handful of studies have tested for genetic variation in CO2-sensitive traits, which might enable fish to adapt to projected future CO2 levels. This is a serious knowledge gap that needs a concerted research effort to overcome. Without basic information on genetic variation in fitness-associated traits and the strength of selection, it is not possible to make informed decisions about the impacts of elevated CO2 on fish populations over the timeframes that CO2 is changing. 
    more » « less
  3. null (Ed.)
    Experimental studies assessing the potential impacts of ocean acidification on marine organisms have rapidly expanded and produced a wealth of empirical data over the past decade. This perspective examines four key areas of transformative developments in experimental approaches: (1) methodological advances; (2) advances in elucidating physiological and molecular mechanisms behind observed CO 2 effects; (3) recognition of short-term CO 2 variability as a likely modifier of species sensitivities (Ocean Variability Hypothesis); and (4) consensus on the multistressor nature of marine climate change where effect interactions are still challenging to anticipate. No single experiment allows predicting the fate of future populations. But sustaining the accumulation of empirical evidence is critical for more robust estimates of species reaction norms and thus for enabling better modeling approaches. Moreover, advanced experimental approaches are needed to address knowledge gaps including changes in species interactions and intraspecific variability in sensitivity and its importance for the adaptation potential of marine organisms to a high CO 2 world. 
    more » « less
  4. null (Ed.)
    Despite the remarkable expansion of laboratory studies, robust estimates of single species CO 2 sensitivities remain largely elusive. We conducted a meta-analysis of 20 CO 2 exposure experiments conducted over 6 years on offspring of wild Atlantic silversides ( Menidia menidia ) to robustly constrain CO 2 effects on early life survival and growth. We conclude that early stages of this species are generally tolerant to CO 2 levels of approximately 2000 µatm, likely because they already experience these conditions on diel to seasonal timescales. Still, high CO 2 conditions measurably reduced fitness in this species by significantly decreasing average embryo survival (−9%) and embryo+larval survival (−13%). Survival traits had much larger coefficients of variation (greater than 30%) than larval length or growth (3–11%). CO 2 sensitivities varied seasonally and were highest at the beginning and end of the species' spawning season (April–July), likely due to the combined effects of transgenerational plasticity and maternal provisioning. Our analyses suggest that serial experimentation is a powerful, yet underused tool for robustly estimating small but true CO 2 effects in fish early life stages. 
    more » « less
  5. null (Ed.)
    Concurrent ocean warming and acidification demand experimental approaches that assess biological sensitivities to combined effects of these potential stressors. Here, we summarize five CO2 × temperature experiments on wild Atlantic silverside, Menidia menidia, offspring that were reared under factorial combinations of CO2 (nominal: 400, 2200, 4000, and 6000 µatm) and temperature (17, 20, 24, and 28 °C) to quantify the temperature-dependence of CO2 effects in early life growth and survival. Across experiments and temperature treatments, we found few significant CO2 effects on response traits. Survival effects were limited to a single experiment, where elevated CO2 exposure reduced embryo survival at 17 and 24 °C. Hatch length displayed CO2 × temperature interactions due largely to reduced hatch size at 24 °C in one experiment but increased length at 28 °C in another. We found no overall influence of CO2 on larval growth or survival to 9, 10, 15 and 13–22 days post-hatch, at 28, 24, 20, and 17 °C, respectively. Importantly, exposure to cooler (17 °C) and warmer (28 °C) than optimal rearing temperatures (24 °C) in this species did not appear to increase CO2 sensitivity. Repeated experimentation documented substantial inter- and intra-experiment variability, highlighting the need for experimental replication to more robustly constrain inherently variable responses. Taken together, these results demonstrate that the early life stages of this ecologically important forage fish appear largely tolerate to even extreme levels of CO2 across a broad thermal regime. 
    more » « less
  6. null (Ed.)
  7. Browman, Howard (Ed.)
    Ocean acidification may impact the fitness of marine fish, however, studies reporting neutral to moderate effects have mostly performed short-term exposures to elevated CO2, whereas longer-term studies across life stages are still scarce. We performed a CO2 exposure experiment, in which a large number (n > 2200) of Atlantic silverside Menidia menidia offspring from wild spawners were reared for 135 days through their embryonic, larval, and juvenile stages under control (500 µatm) and high CO2 conditions (2300 µatm). Although survival was high across treatments, subtle but significant differences in length, weight, condition factor and fatty acid (FA) composition were observed. On average, fish from the acidified treatment were 4% shorter and weighed 6% less, but expressed a higher condition factor than control juveniles. In addition, the metrics of length and weight distributions differed significantly, with juveniles from the high CO2 treatment occupying more extreme size classes and the length distribution shifting to a positive kurtosis. Six of twenty-seven FAs differed significantly between treatments. Our results suggest that high CO2 conditions alter long-term growth in M. menidia, particularly in the absence of excess food. It remains to be shown whether and how these differences will impact fish populations in the wild facing size-selective predation and seasonally varying prey abundance. 
    more » « less
  8. null (Ed.)
    There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH–low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. 
    more » « less