skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth and Mortality as Causes of Variation in Metabolic Scaling Among Taxa and Taxonomic Levels
Abstract Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR = aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b ≈ 1). Moreover, I show that within-individual b can vary much more widely than previously assumed from work on different individuals or different species, from –1 to 1 for SMR among individual brown trout. The negative scaling of SMR for some individuals was caused by reductions in metabolic rate in a food limited environment, likely to maintain positive growth. This resulted in a mean within-individual b for SMR that was significantly lower than the across-individual (“static”) b, a difference that also existed for another species, cunner (Tautogolabrus adspersus). Interestingly, the wide variation in ontogenetic b for SMR among individual brown trout did not exist for maximum (active) metabolic rate (MMR) of the same fish, showing that these two key metabolic traits (SMR and MMR) can scale independently of one another. I also show that across-species (“evolutionary”) b for SMR of 134 fishes is significantly steeper (b approaching 1) than the mean ontogenetic b for the brown trout and cunner. Based on these interesting findings, I hypothesise that evolutionary and static metabolic scaling can be systematically different from ontogenetic scaling, and that the steeper evolutionary than ontogenetic scaling for fishes arises as a by-product of natural selection for fast-growing individuals with steep metabolic scaling (b ≈ 1) early in life, where size-selective mortality is high for fishes. I support this by showing that b for SMR tends to increase with natural mortality rates of fish larvae within taxa.  more » « less
Award ID(s):
2141592
PAR ID:
10402343
Author(s) / Creator(s):
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
62
Issue:
5
ISSN:
1540-7063
Page Range / eLocation ID:
1448 to 1459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The metabolic rate (ṀO2) of eurythermal fishes changes in response to temperature, yet it is unclear how changes in mitochondrial function contribute to changes in ṀO2. We hypothesized that ṀO2 would increase with acclimation temperature in the threespine stickleback (Gasterosteus aculeatus) in parallel with metabolic remodeling at the cellular level but that changes in metabolism in some tissues, such as liver, would contribute more to changes in ṀO2 than others. Threespine stickleback were acclimated to 5, 12 and 20°C for 7 to 21 weeks. At each temperature, standard and maximum metabolic rate (SMR and MMR, respectively), and absolute aerobic scope (AAS) were quantified, along with mitochondrial respiration rates in liver, oxidative skeletal and cardiac muscles, and the maximal activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in liver, and oxidative and glycolytic skeletal muscles. SMR, MMR and AAS increased with acclimation temperature, along with rates of mitochondrial phosphorylating respiration in all tissues. Low SMR and MMR at 5°C were associated with low or undetectable rates of mitochondrial complex II activity and a greater reliance on complex I activity in liver, oxidative skeletal muscle and heart. SMR was positively correlated with cytochrome c oxidase (CCO) activity in liver and oxidative muscle, but not mitochondrial proton leak, whereas MMR was positively correlated with CCO activity in liver. Overall, the results suggest that changes in ṀO2 in response to temperature are driven by changes in some aspects of mitochondrial function in some, but not all, tissues of threespine stickleback. 
    more » « less
  2. Synopsis Metabolism is a fundamental attribute of all organisms that influences how species affect and are affected by their natural environment. Differences between sexes in ectothermic species may substantially alter metabolic scaling patterns, particularly in viviparous or live-bearing species where females must support their basal metabolic costs and that of their embryos. Indeed, if pregnancy is associated with marked increases in metabolic demand and alters scaling patterns between sexes, this could in turn interact with natural sex ratio variation in nature to affect population-level energy demand. Here, we aimed to understand how sex and pregnancy influence metabolic scaling and how differences between sexes affect energy demand in Gambusia affinis (Western mosquitofish). Using the same method, we measured routine metabolic rate in the field on reproductively active fish and in the laboratory on virgin fish. Our data suggest that changes in energy expenditure related to pregnancy may lead to steeper scaling coefficients in females (b = 0.750) compared to males (b = 0.595). In contrast, virgin females and males had similar scaling coefficients, suggesting negligible sex differences in metabolic costs in reproductively inactive fish. Further, our data suggest that incorporating sex differences in allometric scaling may alter population-level energy demand by as much as 20–28%, with the most pronounced changes apparent in male-biased populations due to the lower scaling coefficient of males. Overall, our data suggest that differences in energy investment in reproduction between sexes driven by pregnancy may alter allometric scaling and population-level energy demand. 
    more » « less
  3. ABSTRACT The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships. 
    more » « less
  4. Abstract Trophic interactions operate across the lifetime of an individual organism, yet our understanding of these processes is largely limited to a single life stage or moment in time. Management and conservation implications of this knowledge gap are particularly important, given the mounting number, spread, and ecological impacts of invasive species. Biotracers, such as carbon and nitrogen stable isotopes of animal muscle, are commonly used to characterize the trophic ecology of an individual but fail to capture intraindividual variation and ontogenetic dietary shifts. However, recent work suggests that eye lenses may facilitate the reconstruction of individual lifetime trophic trajectories for fishes, including the chronology of past trophic positions of and carbon flow to consumers. By combining stable isotope analysis of fish eye lens tissue with aging techniques (otolith growth measurements), this study is the first to ask how the lifetime trophic niches of individuals vary within different community contexts. The results provide evidence for asymmetric competition causing differing trajectories in lifetime trophic niches for native and nonnative fishes along an invasion gradient in Burro Creek, Arizona, USA. Native roundtail chub, Sonora sucker, and desert sucker all displayed a coordinated displacement of lifetime trophic trajectories to a lower trophic level and reliance on aquatic, rather than terrestrial, resources as indicated by a shift to lower δ13C and δ15N in mixed, relative to native‐only, communities. By contrast, the trophic trajectories of nonnative green sunfish and bullhead species remained consistent between native and nonnative dominated communities. The presence of nonnative species led to a significantly greater decrease in δ13C through ontogeny for roundtail chub, a species of conservation concern in Arizona. These results demonstrate the prolonged trophic impact of nonnative fishes on native fishes beyond a single life stage. Displacement of ontogenetic dietary shifts by native fishes through interactions with nonnative species may lead to reduced fish growth and fitness, with implications at the population and ecosystem levels. Stable isotope analysis of fish eye lens tissue offers new opportunities to study the lifetime chronology of individual feeding habits and allows for exploration of the impacts of invasive species and environmental change throughout ontogeny. 
    more » « less
  5. Abstract. Physiological aspects like heat balance, gas exchange, osmoregulation, and digestion of the early Permian aquatic temnospondyl Archegosaurus decheni, which lived in a tropical freshwater lake, are assessed based on osteological correlates of physiologically relevant soft-tissue organs and by physiological estimations analogous to air-breathing fishes. Body mass (M) of an adult Archegosaurus with an overall body length of more than 1m is estimated as 7kg using graphic double integration. Standard metabolic rate (SMR) at 20°C (12kJh−1) and active metabolic rate (AMR) at 25°C (47kJh−1) were estimated according to the interspecific allometry of metabolic rate (measured as oxygen consumption) of all fish (VO2 = 4. 8M0. 88) and form the basis for most of the subsequent estimations. Archegosaurus is interpreted as a facultative air breather that got O2 from the internal gills at rest in well-aerated water but relied on its lungs for O2 uptake in times of activity and hypoxia. The bulk of CO2 was always eliminated via the gills. Our estimations suggest that if Archegosaurus did not have gills and released 100% CO2 from its lungs, it would have to breathe much more frequently to release enough CO2 relative to the lung ventilation required for just O2 uptake. Estimations of absorption and assimilation in the digestive tract of Archegosaurus suggest that an adult had to eat about six middle-sized specimens of the acanthodian fish Acanthodes (ca. 8cm body length) per day to meet its energy demands. Archegosaurus is regarded as an ammonotelic animal that excreted ammonia (NH3) directly to the water through the gills and the skin, and these diffusional routes dominated nitrogen excretion by the kidneys as urine. Osmotic influx of water through the gills had to be compensated for by production of dilute, hypoosmotic urine by the kidneys. Whereas Archegosaurus has long been regarded as a salamander-like animal, there is evidence that its physiology was more fish- than tetrapod-like in many respects. 
    more » « less