skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Random Linear Streaming Codes in the Finite Memory Length and Decoding Deadline Regime
Streaming codes take a string of source symbols as input and output a string of coded symbols in real time, which effectively eliminate the queueing delay and are regarded as a promising scheme for low latency communications. Aiming at quantifying the fundamental latency performance of random linear streaming codes (RLSCs) over i.i.d. symbol erasure channels, this work derives the exact error probability under, simultaneously, the finite memory length and finite decoding deadline constraints. The result is then used to examine the tradeoff among memory length (complexity), decoding deadline (delay), and error probability (reliability) of RLSCs for the first time in the literature. Two critical observations are made: (i) Too much memory can adversely impact the performance under a finite decoding deadline constraint, a surprising finding not captured by the traditional wisdom that large memory length monotonically improves the performance in the asymptotic regime; (ii) The end-to-end delay of the RLSC is roughly 50% of that of the MDS block code when under identical code rate and error probability requirements. This implies that switching from block codes to RLSCs not only eliminates the queueing delay (thus 50%) but also has little negative impact on the error probability.  more » « less
Award ID(s):
2008527 1816013
PAR ID:
10249972
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
730 to 735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Streaming codes eliminate the queueing delay and are an appealing candidate for low latency communications. This work studies the tradeoff between error probability p_e and decoding deadline ∆ of infinite-memory random linear streaming codes (RLSCs) over i.i.d. symbol erasure channels (SECs). The contributions include (i) Proving pe(∆) ∼ ρ∆^{−1.5}e^{−η∆}. The asymptotic power term ∆^{−1.5} of RLSCs is a strict improvement over the ∆^{−0.5} term of random linear block codes; (ii) Deriving a pair of upper and lower bounds on the asymptotic constant ρ, which are tight (i.e., identical) for one specific class of SECs; (iii) For any c > 1 and any decoding deadline ∆, the c-optimal memory length α^*_c (∆) is defined as the minimal memory length α needed for the resulting pe to be within a factor of c of the best possible p^*_e under any α, an important piece of information for practical implementation. This work studies and derives new properties of α^*_c (∆) based on the newly developed asymptotics. 
    more » « less
  2. A novel code construction based on spatially coupled low-density parity-check (SC-LDPC) codes is presented. The proposed code ensembles are comprised of several protographbased chains characterizing individual SC-LDPC codes. We demonstrate that code ensembles obtained by connecting appropriately chosen individual SC-LDPC code chains at specific points have improved iterative decoding thresholds. In addition, the connected chain ensembles have a smaller decoding complexity required to achieve a specific bit error probability compared to individual code chains. Moreover, we demonstrate that, like the individual component chains, the proposed constructions have a typical minimum distance that grows linearly with block length. Finally, we show that the improved asymptotic properties of the connected chain ensembles also translate into improved finite length performance. 
    more » « less
  3. Iterative decoding of graph-based codes and sparse recovery through approximate message passing (AMP) are two research areas that have seen monumental progress in recent decades. Inspired by these advances, this article introduces sparse regression LDPC codes (SR-LDPC codes) and their decoding. Sparse regression codes (SPARCs) are a class of error correcting codes that build on ideas from compressed sensing and can be decoded using AMP. In certain settings, SPARCs are known to achieve capacity; yet, their performance suffers at finite block lengths. Likewise, low-density parity-check (LDPC) codes can be decoded efficiently using belief propagation and can also be capacity achieving. This article introduces a novel concatenated coding structure that combines an LDPC outer code with a SPARC-inspired inner code. Efficient decoding for such a code can be achieved using AMP with a denoiser that performs belief propagation on the factor graph of the outer LDPC code. The proposed framework exhibits performance improvements over SPARCs and standard LDPC codes for finite block lengths and results in a steep waterfall in error performance, a phenomenon not observed in uncoded SPARCs. 
    more » « less
  4. Error correction coding schemes with local-global decoding are motivated by practical data storage applications where a balance must be achieved between low latency read access and high data reliability. As an example, consider a 4KB codeword, consisting of four 1KB subblocks, that supports a local-global decoding architecture. Local decoding can provide reliable, low-latency access to individual 1KB subblocks under good channel conditions, while global decoding can provide a “safety-net” for recovery of the entire 4KB block when local decoding fails under bad channel conditions. Recently, Ram and Cassuto have proposed such local-global decoding architectures for LDPC codes and spatially coupled LDPC codes. In this paper, we investigate a coupled polar code architecture that supports both local and global decoding. The coupling scheme incorporates a systematic outer polar code and a partitioned mapping of the outer codeword to semipolarized bit-channels of the inner polar codes. Error rate simulation results are presented for 2 and 4 subblocks. 
    more » « less
  5. Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing. 
    more » « less