skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti
Award ID(s):
1754115
PAR ID:
10249976
Author(s) / Creator(s):
Date Published:
Journal Name:
Parasites vectors
ISSN:
1756-3305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract The Alpine goat ( Capra aegagrus hircus ) is parasitized by the barber pole worm ( Haemonchus contortus ). Hematological parameters from transcript and metagenome analysis in the host are reflective of infestation. We explored comparisons between blood samples of control, infected, infected zoledronic acid-treated, and infected antibody (anti-γδ T cells) treated wethers under controlled conditions. Seven days post-inoculation (dpi), we identified 7,627 transcripts associated with the different treatment types. Microbiome measurements at 7 dpi revealed fewer raw read counts across all treatments and a less diverse microbial flora than at 21 dpi. This study identifies treatment specific transcripts and an increase in microflora abundance and diversity as wethers age. Further, F / B ratio reflect health, based on depression or elevation above thresholds defined by the baseline of non-infected controls. Forty Alpine wethers were studied where blood samples were collected from five goats in four treatment groups on 7 dpi and 21 dpi. Transcript and microbiome profiles were obtained using the Partek Flow (St. Louis, Missouri, USA) software suites pipelines. Inflammation comparisons were based on the Firmicutes / Bacteriodetes ratios that are calculated as well as the reduction of microbial diversity. 
    more » « less
  3. Three-dimensional (3D) dried blood spheroids form when whole blood is deposited onto hydrophobic paper and allowed to dry in ambient air. The adsorbed 3D dried blood spheroid present at the surface of the hydrophobic paper is observed to offer enhanced stability for labile analytes that would otherwise degrade if stored in the traditional two-dimensional (2D) dried blood spot method. The protective mechanism for the dried blood spheroid microsampling platform was studied using scanning electron microscopy (SEM), which revealed the presence of a passivation thin film at the surface of the spheroid that serves to stabilize the interior of the spheroid against environmental stressors. Through time-course experiments based on sequential SEM analyses, we discovered that the surface protective thin film forms through the self-assembly of red blood cells following the evaporation of water from the blood sample. The bridging mechanism of red blood cell aggregation is evident in our experiments, which leads to the distinct rouleau conformation of stacked red blood cells in less than 60 min after creating the blood spheroid. The stack of self-assembled red blood cells at the exterior of the spheroid subsequently lyse to afford the surface protective layer detected to be approximately 30 μm in thickness after three weeks of storage in ambient air. We applied this mechanistic insight to plasma and serum to enhance stability when stored under ambient conditions. In addition to physical characterization of these thin biofilms, we also used paper spray (PS) mass spectrometry (MS) to examine chemical changes that occur in the stored biofluid. For example, we present stability data for cocaine spiked in whole blood, plasma, and serum when stored under ambient conditions on hydrophilic and hydrophobic paper substrates. 
    more » « less