skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elementary teachers’ beliefs about teaching mathematics and science: Implications for argumentation.
Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers (see, e.g., Conner & Kittleson, 2009). How to teach STEM lessons without ignoring the unique characteristics, depth, and rigor of each discipline is an open question (Kertil & Gurel, 2016). This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs.  more » « less
Award ID(s):
1741910
PAR ID:
10250018
Author(s) / Creator(s):
;
Editor(s):
Sacristan, AI; Cortes-Zavala, JC; Ruiz-Arias, PM
Date Published:
Journal Name:
PME-NA
Page Range / eLocation ID:
1951-52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacristán, A.I.; Cortés-Zavala, J.C.; Ruiz-Arias, P.M. (Ed.)
    Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers. This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs. Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along with contextual constraints, led to different beliefs and intentions for practice with respect to argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum the teachers perceived as essential focused more attention on the teaching of mathematics, which could be seen as benefiting student learning of mathematics. On the other hand, the perception of science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the creation of a more positive learning environment for the teaching of science. These questions remain open and need to be studied further: What are the consequences of perceiving argumentation in mathematics as limited to concepts already well-understood? Can integrating the teaching of mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas alongside scientific ones? 
    more » « less
  2. Compelling evidence, from multiple levels of schooling, suggests that teachers’ knowledge and beliefs about knowledge, knowing, and learning ( i.e. , epistemologies) play a strong role in shaping their approaches to teaching and learning. Given the importance of epistemologies in science teaching, we as researchers must pay careful attention to how we model them in our work. That is, we must work to explicitly and cogently develop theoretical models of epistemology that account for the learning phenomena we observe in classrooms and other settings. Here, we use interpretation of instructor interview data to explore the constraints and affordances of two models of epistemology common in chemistry and science education scholarship: epistemological beliefs and epistemological resources. Epistemological beliefs are typically assumed to be stable across time and place and to lie somewhere on a continuum from “instructor-centered” (worse) to “student-centered” (better). By contrast, a resources model of epistemology contends that one's view on knowledge and knowing is compiled in-the-moment from small-grain units of cognition called resources . Thus, one's epistemology may change one moment to the next. Further, the resources model explicitly rejects the notion that there is one “best” epistemology, instead positing that different epistemologies are useful in different contexts. Using both epistemological models to infer instructors’ epistemologies from dialogue about their approaches to teaching and learning, we demonstrate that how one models epistemology impacts the kind of analyses possible as well as reasonable implications for supporting instructor learning. Adoption of a beliefs model enables claims about which instructors have “better” or “worse” beliefs and suggests the value of interventions aimed at shifting toward “better” beliefs. By contrast, modeling epistemology as in situ activation of resources enables us to explain observed instability in instructors’ views on knowing and learning, surface and describe potentially productive epistemological resources, and consider instructor learning as refining valuable intuition rather than “fixing” “wrong beliefs”. 
    more » « less
  3. Elementary teachers often feel underprepared to teach integrated STEM (iSTEM) and describe their preservice teacher preparation as ineffective. The purpose of this study is to investigate the extent to which semester-long STEM methods courses influenced elementary preservice teachers’ (PSTs) iSTEM teaching self-efficacy and identify how the sources of self-efficacy influenced their beliefs and confidence in teaching iSTEM. Participants included 131 PSTs at a large midwestern research-intensive public university in the United States. Quantitative data sources included the Self-Efficacy for Teaching Integrated STEM instrument administered as a pre-and post-test. The qualitative data collection included two semi-structured interviews with 10 selected participants. Findings suggest that PSTs experienced growth in iSTEM teaching self-efficacy through their STEM methods coursework. Sources that emerged as contributors toward enhanced confidence to teach iSTEM were enactive mastery, emotional arousal, vicarious experiences, and verbal persuasions. The implications for preservice teacher preparation programs and future research on iSTEM teaching self-efficacy are discussed. 
    more » « less
  4. Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering. 
    more » « less
  5. Understanding teachers’ conceptions surrounding integrated STEM education is vital to the successful implementation of integrated STEM curricula in K-12 classrooms. Of particular interest is understanding how teachers conceptualize the role of the STEM disciplines within their integrated STEM teaching. Further, despite knowing that content-agnostic characteristics of integrated STEM education are important, little is known about how teachers conceptualize the real-world problems, 21st century skills, and the promotion of STEM careers in their integrated STEM instruction. This study used an exploratory case study design to investigate conceptions of 19 K-12 science teachers after participating in an integrated STEM-focused professional development and implementing integrated STEM lessons into their classrooms. Our findings show that all teacher participants viewed STEM education from an integrative perspective that fosters the development of 21st century skills, using real-world problems to motivate students. Our findings also reveal that teachers have varying ideas related to the STEM disciplines within integrated STEM instruction, which could assist teacher educators in preparing high-quality professional development experiences. Findings related to real-world problems, 21st century skills, and STEM careers provide a window into how to best support teachers to include these characteristics into their teaching more explicitly. 
    more » « less