skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beliefs versus resources: a tale of two models of epistemology
Compelling evidence, from multiple levels of schooling, suggests that teachers’ knowledge and beliefs about knowledge, knowing, and learning ( i.e. , epistemologies) play a strong role in shaping their approaches to teaching and learning. Given the importance of epistemologies in science teaching, we as researchers must pay careful attention to how we model them in our work. That is, we must work to explicitly and cogently develop theoretical models of epistemology that account for the learning phenomena we observe in classrooms and other settings. Here, we use interpretation of instructor interview data to explore the constraints and affordances of two models of epistemology common in chemistry and science education scholarship: epistemological beliefs and epistemological resources. Epistemological beliefs are typically assumed to be stable across time and place and to lie somewhere on a continuum from “instructor-centered” (worse) to “student-centered” (better). By contrast, a resources model of epistemology contends that one's view on knowledge and knowing is compiled in-the-moment from small-grain units of cognition called resources . Thus, one's epistemology may change one moment to the next. Further, the resources model explicitly rejects the notion that there is one “best” epistemology, instead positing that different epistemologies are useful in different contexts. Using both epistemological models to infer instructors’ epistemologies from dialogue about their approaches to teaching and learning, we demonstrate that how one models epistemology impacts the kind of analyses possible as well as reasonable implications for supporting instructor learning. Adoption of a beliefs model enables claims about which instructors have “better” or “worse” beliefs and suggests the value of interventions aimed at shifting toward “better” beliefs. By contrast, modeling epistemology as in situ activation of resources enables us to explain observed instability in instructors’ views on knowing and learning, surface and describe potentially productive epistemological resources, and consider instructor learning as refining valuable intuition rather than “fixing” “wrong beliefs”.  more » « less
Award ID(s):
2225025
PAR ID:
10445640
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
24
Issue:
2
ISSN:
1109-4028
Page Range / eLocation ID:
768 to 784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To prepare students to use science knowledge in their later personal or professional lives, we must attend to what they believe it means to know and learn science (i.e., epistemology). Unfortunately, we have little understanding of how students' epistemologies shift and are stabilized as they navigate their science courses. Researchers have made intuitive arguments that many microscale epistemological messages sum over time to give rise to macro‐scale understandings of knowing and learning, but we have no theoretical model for how this sum unfolds. Here, we begin to build such a theoretical model. To do so, we focus on assessments and related materials in a college chemistry course as potentially consequential sources of messages about valued knowledge products and processes. We then elicited students' evolving understandings of assessment‐related epistemological messages in several one‐on‐one interviews conducted throughout the semester. Analysis of how three students experienced, negotiated, and responded to assessment‐related messages showed that interactions with the course system stabilized a consistent, well‐resolved picture of the ways of knowing and learning that counted in the focal course. Specifically, good knowledge must have specific authority‐mandated features and knowledge is justified primarily via alignment with an instructor‐authored key. Students found utility in different (reliable) processes for achieving the aim of authorized knowledge, and some of these differences were maintained throughout the semester. Implications for modeling students' experience with course‐embedded epistemological messages over time and how this work might inform practice are discussed. 
    more » « less
  2. Symmetry is a foundational concept in inorganic chemistry, essential for understanding molecular properties and interactions. Yet, little is known about how instructors teach symmetry or what shapes their instructional and curricular choices. To investigate this, we analyzed classroom observations from fourteen inorganic chemistry instructors from various institutions, focusing on their use of student-centered practices and emphasis on symmetry content. We then conducted semi-structured interviews to explore the reasoning behind their decisions, using the Teacher-Centered Systemic Reform (TCSR) model to interpret influences from personal factors (e.g., teaching experience), teacher thinking (e.g., beliefs about teaching and learning), and contextual factors (e.g., classroom layout). Minute-by-minute analyses of teaching revealed four instructional profiles (student-centered, high-interactive, low-interactive, and instructor-centered) and four content profiles, ranging from an emphasis on symmetry fundamentals (e.g., symmetry elements and operations, point group assignment) to symmetry applications (e.g., spectroscopy, molecular orbitals, character tables). Three themes emerged: (1) instructional approaches and content emphasis vary substantially across instructors; (2) more student-centered instructors tend to focus on foundational symmetry concepts and skills, whereas more instructor-centered instructors tend to prioritize advanced applications; and (3) instructors’ beliefs and prior experiences, more than personal and contextual factors, drive instructional decisions for teaching symmetry. 
    more » « less
  3. Jones, Dyan; Ryan, Qing X.; Pawl, Andrew (Ed.)
    Designing physics courses that support students' activation and development of expert-like physics epistemologies is a significant goal of Physics Education Research. However, very little research has focused on how physics students' interactions with course structures resonate with different epistemological views. As part of a course redesign effort to increase student success in introductory physics, we interviewed introductory physics students about their experiences with course structures and their learning and belonging beliefs. We present here a case from this broader data corpus in which a student, Robyn, discusses his epistemological views of physics problem solving and his experiences with physics lectures, office hours, and discussion sections. We find that Robyn's physics epistemology manifests consistently across his interactions with each of these different course structures, suggesting a possible resonance between students' beliefs and their experiences with course structures and the value of further investigation into the potential merits of comprehensive course design. 
    more » « less
  4. Carbonneau, Kira; Meltzoff, Katherine (Ed.)
    This chapter focuses on accessible active learning (AL) strategies that promote equitable and effective student-centered instruction for higher education. Although there is not a consensus definition of AL across disciplines, principles of AL include attention to student engagement with content, peer-to-peer interactions, instructor uses of student thinking, and instructor attention to equity. A variety of AL strategies vary in complexity, time, and resources, and instructors can build up repertoires of such teaching practices. The field needs cultural change that moves away from lecture and toward AL and student engagement as the norm for equitable and effective teaching. Although such cultural change needs to include instructor professional learning about AL strategies, it also needs attention to collective beliefs, power dynamics, and structures that support (or inhibit) equitable AL implementation. This chapter provides frameworks for sustainable change to using AL in higher education, as well as research-based findings around which AL strategies are easy on-ramps for novice instructors. This chapter also provides a few specific examples of structures that support AL—course coordination and peer mentoring—and provides questions one may pose in attempting to spur cultural change that centers AL. 
    more » « less
  5. This work in progress explores the epistemologies and discourse used by undergraduate students at the transdisciplinary intersection of engineering and the arts. Our research questions are focused on the kinds of knowledge that students value, use, and identify within the context of an interdisciplinary digital media program, and exploring how their language reflects this. Our theoretical framework for analyzing epistemology draws upon qualitative work in STEM epistemology, domain specificity, and epistemological camps. Further, to analyze the language used by participants, we employ the use of discourse analysis as the study of language-in-use. Six interviews were conducted with students pursuing a semester-long senior capstone project in the School of Arts, Media and Engineering undergraduate degree program at Arizona State University. Preliminary findings show that students showcase a variety of epistemologies including positivism, constructivism, and pragmatism while engaged in their studies. “Border epistemologies” are introduced as a way to think and/or construct knowledge that may receive different value from discipline to discipline. Future research aims to synergistically combine these two methods of epistemological and discourse analysis to understand more deeply knowledge generation and utilization in these transdisciplinary arts and engineering programs. 
    more » « less