skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Byzantine-Resilient Multi-Agent Optimization
We consider the problem of multiagent optimization wherein an unknown subset of agents suffer Byzantine faults and thus behave adversarially. We assume that each agent i has a local cost function fi , and the overarching goal of the good agents is to collaboratively minimize a global objective that properly aggregates these local cost functions. To the best of our knowledge, we are among the first to study Byzantine-resilient optimization where no central coordinating agent exists, and we are the first to characterize the structures of the convex coefficients of the achievable global objectives. Dealing with Byzantine faults is very challenging. For example, in contrast to fault-free networks, reaching Byzantine-resilient agreement even in the simplest setting is far from trivial. We take a step toward solving the proposed Byzantine-resilient multiagent optimization problem by focusing on scalar local cost functions. Our results might provide useful insights for the general local cost functions.  more » « less
Award ID(s):
2003830
PAR ID:
10250084
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE transactions on automatic control
ISSN:
2334-3303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article considers resilient cooperative state estimation in unreliable multiagent networks. A network of agents aim to collaboratively estimate the value of an unknown vector parameter, while an unknown subset of agents suffer Byzantine faults. We refer to the faulty agents as Byzantine agents. Byzantine agents malfunction arbitrarily and may send out highly unstructured messages to other agents in the network. As opposed to fault-free networks, reaching agreement in the presence of Byzantine agents is far from trivial. In this article, we propose a computationally efficient algorithm that is provably robust to Byzantine agents. At each iteration of the algorithm, a good agent performs a gradient descent update based on noisy local measurements, exchanges its update with other agents in its neighborhood, and robustly aggregates the received messages using coordinate-wise trimmed means. Under mild technical assumptions, we establish that good agents learn the true parameter asymptotically in almost sure sense. We further complement our analysis by proving (high probability) finite-time convergence rate, encapsulating network characteristics. 
    more » « less
  2. Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)
    Network Markov Decision Processes (MDPs), which are the de-facto model for multi-agent control, pose a significant challenge to efficient learning caused by the exponential growth of the global state-action space with the number of agents. In this work, utilizing the exponential decay property of network dynamics, we first derive scalable spectral local representations for multiagent reinforcement learning in network MDPs, which induces a network linear subspace for the local $$Q$$-function of each agent. Building on these local spectral representations, we design a scalable algorithmic framework for multiagent reinforcement learning in continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm. Empirically, we validate the effectiveness of our scalable representation-based approach on two benchmark problems, and demonstrate the advantages of our approach over generic function approximation approaches to representing the local $$Q$$-functions. 
    more » « less
  3. Diversity in behaviors is instrumental for robust team performance in many multiagent tasks which require agents to coordinate. Unfortunately, exhaustive search through the agents’ behavior spaces is often intractable. This paper introduces Behavior Exploration for Heterogeneous Teams (BEHT), a multi-level learning framework that enables agents to progressively explore regions of the behavior space that promote team coordination on diverse goals. By combining diversity search to maximize agent-specific rewards and evolutionary optimization to maximize the team-based fitness, our method effectively filters regions of the behavior space that are conducive to agent coordination. We demonstrate the diverse behaviors and synergies that are method allows agents to learn on a multiagent exploration problem. 
    more » « less
  4. We consider an in-network optimal resource allocation problem in which a group of agents interacting over a connected graph want to meet a demand while minimizing their collective cost. The contribution of this paper is to design a distributed continuous-time algorithm for this problem inspired by a recently developed first-order transformed primal-dual method. The solution applies to cluster-based setting where each agent may have a set of subagents, and its local cost is the sum of the cost of these subagents. The proposed algorithm guarantees an exponential convergence for strongly convex costs and asymptotic convergence for convex costs. Exponential convergence when the local cost functions are strongly convex is achieved even when the local gradients are only locally Lipschitz. For convex local cost functions, our algorithm guarantees asymptotic convergence to a point in the minimizer set. Through numerical examples, we show that our proposed algorithm delivers a faster convergence compared to existing distributed resource allocation algorithms. 
    more » « less
  5. In distributed optimization schemes consisting of a group of agents connected to a central coordinator, the optimization algorithm often involves the agents solving private local sub-problems and exchanging data frequently with the coordinator to solve the global distributed problem. In those cases, the query-response mechanism usually causes excessive communication costs to the system, necessitating communication reduction in scenarios where communication is costly. Integrating Gaussian processes (GP) as a learning component to the Alternating Direction Method of Multipliers (ADMM) has proven effective in learning each agent’s local proximal operator to reduce the required communication exchange. A key element for integrating GP into the ADMM algorithm is the querying mechanism upon which the coordinator decides when communication with an agent is required. In this paper, we formulate a general querying decision framework as an optimization problem that balances reducing the communication cost and decreasing the prediction error. Under this framework, we propose a joint query strategy that takes into account the joint statistics of the query and ADMM variables and the total communication cost of all agents in the presence of uncertainty caused by the GP regression. In addition, we derive three different decision mechanisms that simplify the general framework by making the communication decision for each agent individually. We integrate multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution’s accuracy/optimality. The proposed methods can achieve significant communication reduction and good optimization solution accuracy for distributed optimization, as demonstrated by extensive simulations of a distributed sharing problem. 
    more » « less