skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 1, 2025

Title: Permanent Stress Adaptation and Unexpected High Light Tolerance in the Shade-Adapted Chlamydomonas priscui

The Antarctic photopsychrophile, Chlamydomonas priscui UWO241, is adapted to extreme environmental conditions, including permanent low temperatures, high salt, and shade. During long-term exposure to this extreme habitat, UWO241 appears to have lost several short-term mechanisms in favor of constitutive protection against environmental stress. This study investigated the physiological and growth responses of UWO241 to high-light conditions, evaluating the impacts of long-term acclimation to high light, low temperature, and high salinity on its ability to manage short-term photoinhibition. We found that UWO241 significantly increased its growth rate and photosynthetic activity at growth irradiances far exceeding native light conditions. Furthermore, UWO241 exhibited robust protection against short-term photoinhibition, particularly in photosystem I. Lastly, pre-acclimation to high light or low temperatures, but not high salinity, enhanced photoinhibition tolerance. These findings extend our understanding of stress tolerance in extremophilic algae. In the past 2 decades, climate change-related increasing glacial stream flow has perturbed long-term stable conditions, which has been associated with lake level rise, the thinning of ice covers, and the expansion of ice-free perimeters, leading to perturbations in light and salinity conditions. Our findings have implications for phytoplankton survival and the response to change scenarios in the light-limited environment of Antarctic ice-covered lakes.

 
more » « less
Award ID(s):
2224760
NSF-PAR ID:
10538099
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
www.mdpi.com
Date Published:
Journal Name:
Plants
Volume:
13
Issue:
16
ISSN:
2223-7747
Page Range / eLocation ID:
2254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While PSI-driven cyclic electron flow (CEF) and assembly of thylakoid supercomplexes have been described in model organisms likeChlamydomonas reinhardtii, open questions remain regarding their contributions to survival under long-term stress. The Antarctic halophyte,C. priscuiiUWO241 (UWO241), possesses constitutive high CEF rates and a stable PSI-supercomplex as a consequence of adaptation to permanent low temperatures and high salinity. To understand whether CEF represents a broader acclimation strategy to short- and long-term stress, we compared high salt acclimation between the halotolerant UWO241, the salt-sensitive model,C. reinhardtii, and a moderately halotolerant Antarctic green alga,C.sp. ICE-MDV (ICE-MDV). CEF was activated under high salt and associated with increased non-photochemical quenching in all threeChlamydomonasspecies. Furthermore, high salt-acclimated cells of either strain formed a PSI-supercomplex, while state transition capacity was attenuated. How the CEF-associated PSI-supercomplex interferes with state transition response is not yet known. We present a model for interaction between PSI-supercomplex formation, state transitions, and the important role of CEF for survival during long-term exposure to high salt.

     
    more » « less
  2. Abstract

    Climate change is resulting in increasing ocean temperatures and salinity variability, particularly in estuarine environments. Tolerance of temperature and salinity change interact and thus may impact organismal resilience. Populations can respond to multiple stressors in the short‐term (i.e., plasticity) or over longer timescales (i.e., adaptation). However, little is known about the short‐ or long‐term effects of elevated temperature on the tolerance of acute temperature and salinity changes. Here, we characterized the response of the near‐shore and estuarine copepod,Acartia tonsa, to temperature and salinity stress. Copepods originated from one of two sets of replicated >40 generation‐old temperature‐adapted lines: ambient (AM, 18°C) and ocean warming (OW, 22°C). Copepods from these lines were subjected to one and three generations at the reciprocal temperature. Copepods from all treatments were then assessed for differences in acute temperature and salinity tolerance. Development (one generation), three generations, and >40 generations of warming increased thermal tolerance compared to Ambient conditions, with development in OW resulting in equal thermal tolerance to three and >40 generations of OW. Strikingly, developmental OW and >40 generations of OW had no effect on low salinity tolerance relative to ambient. By contrast, when environmental salinity was reduced first, copepods had lower thermal tolerances. These results highlight the critical role for plasticity in the copepod climate response and suggest that salinity variability may reduce copepod tolerance to subsequent warming.

     
    more » « less
  3. Abstract

    CyanobacteriumMicrocoleus anatoxicus,isolated from a coastal stream in northern California, produces both anatoxin-a (ATX) and dihydroanatoxin-a (dhATX), responsible for dog deaths, but its environmental preferences are unknown. We tested the effect of environmentally relevant stressors, e.g., salinity enrichment and nitrogen (N) depletion, on mat formation and toxicity ofM. anatoxicusduring the stationary growth phase in culture.Microcoleus anatoxicusshowed broad salinity tolerance and the potential to enter estuaries and produce toxins in mesohaline conditions. Maximum growth was observed in oligohaline waters with salinity of 4.6 ppt. Moderate salinity stress (up to 7.8 ppt) did not affect dhATX production significantly. In contrast, higher salinity above 9.3 ppt had a detrimental effect on cell growth and significantly suppressed dhATX production. Formation of a common polysaccharide sheath covering multiple filaments was characteristic with increased salinity and may provide protection against osmotic stress.Microcoleus anatoxicusgrown for 40 days in N-depleted medium formed mats with significantly elevated dhATX and increased ATX concentrations. Phycobilisome degradation was a possible acclimation response to N-limitation, as indicated by distinctly keritomized and pale cells in these cultures. In both experiments, most of the anatoxins were extracellular, probably due to toxin leaking during the stationary growth phase.

     
    more » « less
  4. Environmental contextDimethylsulfoniopropionate (DMSP), a small sulfur compound biosynthesised by algae, plays an important role in global climate, particularly in polar regions. We investigated salinity effects on DMSP levels, and provide the first experimental measurements of DMSP and associated physiological changes in a polar diatom across to a range of gradual salinity shifts representative of sea-ice conditions. Quantitative estimates of DMSP in polar diatoms following salinity changes will facilitate new mathematical models to predict seasonal responses and reactions to climate change.AbstractAlthough extreme environmental gradients within sea-ice have been proposed to stimulate dimethylsulfoniopropionate (DMSP) accumulation in diatoms, a taxa whose temperate counterparts show relatively low concentrations, this has yet to be experimentally validated across a range of salinities representative of sea-ice conditions. The present study examined changes in DMSP concentrations in the widespread polar diatom Fragilariopsis cylindrus in response to gradual salinity shifts representative of those encountered during sea-ice formation and melt. DMSP concentrations were elevated up to 127% in 70-salinity cultures. Low-salinity shifts decreased intracellular DMSP concentrations in a gradient-dependent manner that suggests DMSP recycling rather than release under milder hyposalinity shifts. Permeable membranes were detected in ~45% of 10-salinity cells; therefore, loss of membrane integrity may only partially explain DMSP release in the lowest-salinity group. Growth rates, photosynthetic efficiency of photosystem II and reactive oxygen species detection indicated only partial impairment by salinity stress in this organism. Thus, experimental evidence supports the role of DMSP as a compatible solute in the acclimation of a sea-ice diatom across large salinity gradients and measurements of associated physiological changes will improve interpretation of environmental measurements. 
    more » « less
  5. While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensityPARon the bloom‐forming dinoflagellatesAlexandrium fundyenseandHeterocapsa rotundata. Various physiological parameters (photosynthetic efficiencyFv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐acontent) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to highPAR. While high light decreasedFv/Fmin both species,A. fundyenseshowed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellularDMSPindicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐ainversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells.Heterocapsa rotundatacells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasingDMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐acontent. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.

     
    more » « less