skip to main content


Title: Prediction of Effective Elastic Properties of Carbon/UHMWPE Nanocomposites by Combination of Numerical and Analytical Modeling
In this paper, we investigate ultra-high-molecular-weight-polyethylene (UHMWPE) doped with conductive carbon black (CCB) nanoparticles. This nanocomposite is considered a candidate for biomedical applications such as orthopedics. Micro-computed tomography (μCT) and scanning electron microscopy studies show that the composite has a complex microstructure consisting of larger particles of UHMWPE surrounded by a thin layer containing a high concentration of CCB nano inclusions. The overall mechanical properties of these composites depend on the volume fraction of CCB and the manufacturing procedures e.g., compression molding or equal channel angular extrusion. To predict the effective elastic properties of the CCB/UHMWPE nanocomposite, we propose a multiscale modeling framework based on a combined analytical-numerical approach. μCT images are processed to extract the size, shape, and orientation distributions of UHMWPE particles as well as the volume fractions and spatial distribution of CCB containing layer. These distributions are used to develop multiscale numerical models of the composite including finite element analysis of representative volume elements on the mesoscale, and micromechanical predictions of CCB containing layer on the microscale. The predictive ability of the models is confirmed by comparison with the experimental measurements obtained by dynamic mechanical analysis.  more » « less
Award ID(s):
1757371
NSF-PAR ID:
10501128
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Destech Publications, Inc.
Date Published:
ISBN:
9781605956916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conductive carbon black (CCB) reinforced ultra-high molecular weight polyethylene (UHMWPE) polymers are investigated by micro-computed tomography, scanning electron microscope, and mechanical testing. The composites are manufactured by two techniques: compression molding (CM) and equal channel angular extrusion (ECAE). It is observed that electrical conductivity increases for the composites with the higher concentration of CCB inclusions without significant loss of tensile toughness. At the same time, ECAE procedure decreases the observed thickness of the CCB-rich layer and decreases electrical conductivity of the UHMWPE composites as compared to CM. Concentration of carbon inclusions in CCB-rich layer was evaluated for different weight fractions of CCB in the overall composite. Preliminary studies indicate that ECAE doesn’t change the orientation and elongation of UHMWPE particles in the CM consolidated composites. 
    more » « less
  2. Ultra-High Molecular Weight Polyethylene (UHMWPE) is widely used as a bearing surface in total and partial joint arthroplasty. In addition to medical applications, this polymer is utilized in the fields of ballistic protection, sports, and industrial tribology. The addition of carbon allotropes, such as nanographite or carbon black powders, to UHMWPE offers potential benefits including added conductivity, increased wear resistance, and introduction of micro-tracers for understanding microstructural behavior and monitoring damage [1]. The mechanical properties of these Carbon/UHWPE nanocomposites can be enhanced by subjecting them to equal channel angular extrusion (ECAE) as a way to introduce large shear strains to achieve higher molecular entanglement of UHMWPE and better distribution of carbon nanoparticles [2, 3]. In this paper, micro-computed tomography (µCT) is used to characterize carbon black (CB) and nanographite (N27SG) reinforced UHMWPE polymers. It is shown that the procedure described in [1] results in almost uniform distribution of carbon inclusions around UHMWPE particles with both compression molding (CM), and ECAE processes. Multiscale numerical models of the composite are developed based on the µCT images, including mesoscale finite element (FE) models of representative volume element (RVE) on the mesoscale, and micromechanical predictions for carbon-rich interphase layers on the microscale. 
    more » « less
  3. Abstract

    Ultra‐high molecular weight polyethylene (UHMWPE) has a variety of industrial and clinical applications due to its superb mechanical properties including ductility, tensile strength, and work‐to‐failure. The versatility of UHMWPE is hindered by the difficulty in processing the polymer into a well consolidated material. This study presents on the effects of shear imparted by equal channel angular pressing (ECAP) on UHMWPE composites containing Nano27 Synthetic Graphite (N27SG). Ductility and work‐to‐failure improvements up to ~60–80% are obtained in sheared N27SG‐UHMWPE composites as compared to non‐sheared N27SG‐UHMWPE controls of the same composition. Microscopy reveals increased fusion at particle boundaries and smaller voids in the sheared materials. Micro‐computed tomography results indicate different distribution of N27SG particulates in ECAP samples as compared to CM indicating enhanced grain boundary interactions. Tradeoffs are not avoided as ECAP samples were lower in conductivity as compared to compression molded (CM) billets of the same weight percent. However, ECAP samples were able to be doped with more N27SG allowing for an ~170% increase in conductivity over CM samples of the same work‐to‐failure. This work shows that ECAP is a viable processing method for obtaining stronger, more ductile conductive composite materials.

     
    more » « less
  4. null (Ed.)
    Ultra-high molecular weight polyethylene (UHMWPE) used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty, has to possess superior tribological properties, high mechanical strength, and toughness. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to introduce large shear strains to achieve higher molecular entanglement and superior mechanical properties of this material. Finite element analysis (FEA) can be utilized to evaluate the influence of important manufacturing parameters such as the extrusion rate, temperature, geometry of the die, back pressure, and friction effects. In this paper we present efficient FEA models of ECAE for UHMWPE. Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. Three considered material models (J2-plasticity, Bergstrom-Boyce, and the Three Network Model) predict different extrusion loads, deformed shapes and accumulated shear strain distributions. The work has also shown that the friction coefficient significantly influences the punch force and that the 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel. Additionally, a sharp corner in the die can lead to the formation of the so-called “dead zone” due to a portion of the material lodging into the corner and separating from the billet. Our study shows that the presence of this material in the corner substantially affects the extrusion force and the resulting distribution of accumulated shear strain within the billet 
    more » « less
  5. null (Ed.)
    Ultra high molecular weight polyethylene (UHMWPE) is widely used in biomedical applications, e.g. as a bearing surface in total joint arthroplasty. Recently, equal channel angular extrusion (ECAE) was proposed as a processing method to achieve higher molec ular entanglement and superior mechanical properties of this material. Numerical modeling can be utilized to evaluate the influence of such important manufacturing parameters as the extrusion rate, temperature, geometry of the die, back pressure and fricti on effects in the ECAE of polyethylenes. In this paper we focus on the development of efficient FE models of ECAE for UHMWPE. We study the applicability of the available constitutive models traditionally used in polymer mechanics for UHMWPE, evaluate the importance of the proper choice of the friction parameters between the billet and the die, and compare the accuracy of predictions between 2D (plane strain) and 3D models. Our studies demonstrate that the choice of the constitutive model is extremely important for the accuracy of numerical modeling predictions. It is also shown that the friction coefficient significantly influences the punch force and that 2D plane strain assumption can become inaccurate in the presence of friction between the billet and the extrusion channel. 
    more » « less