skip to main content

Title: An applied ecology of fear framework: linking theory to conservation practice
Research on the ecology of fear has highlighted the importance of perceived risk from predators and humans in shaping animal behavior and physiology, with potential demographic and ecosystem-wide consequences. Despite recent conceptual advances and potential management implications of the ecology of fear, theory and conservation practices have rarely been linked. Many challenges in animal conservation may be alleviated by actively harnessing or compensating for risk perception and risk avoidance behavior in wild animal populations. Integration of the ecology of fear into conservation and management practice can contribute to the recovery of threatened populations, human–wildlife conflict mitigation, invasive species management, maintenance of sustainable harvest and species reintroduction plans. Here, we present an applied framework that links conservation interventions to desired outcomes by manipulating ecology of fear dynamics. We discuss how to reduce or amplify fear in wild animals by manipulating habitat structure, sensory stimuli, animal experience (previous exposure to risk) and food safety trade-offs to achieve management objectives. Changing the optimal decision-making of individuals in managed populations can then further conservation goals by shaping the spatiotemporal distribution of animals, changing predation rates and altering risk effects that scale up to demographic consequences. We also outline future directions for applied research on fear ecology that will better inform conservation practices. Our framework can help scientists and practitioners anticipate and mitigate unintended consequences of management decisions, and highlight new levers for multi-species conservation strategies that promote human–wildlife coexistence.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Animal Conservation
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Evolutionary traps occur when rapid environmental change leads animals to prefer resources (e.g., food, mates, habitats) that reduce their fitness. Traps can lead to rapid population declines, extirpation, and species extinction, yet they have received little attention within the context of wildlife conservation efforts. We first demonstrate that traps are affecting a taxonomically diverse range of animals including key pollinators and important human food species and commonly impact threatened and endangered species. We then provide a conceptual framework for wildlife scientists and practitioners that outlines: (1) the detectable symptoms of evolutionary traps which require further investigation if a trap is affecting the target of existing conservation management; (2) management options for eliminating traps or mitigating their demographic impacts; (3) case studies illustrating how practitioners have applied these mitigations in specific cases; and (4) a structure for considering how these management options should be integrated into existing decision‐making frameworks. Management to eliminate evolutionary traps is a new challenge for conservationist scientists requiring a deeper understanding of the sensory‐cognitive world experienced by nonhuman animals. To do so, it will be essential to diagnose the behavioral mechanisms causing traps and then identify solutions to restore adaptive behavior in target populations.

    more » « less
  2. Abstract Background

    Fire strongly affects animals’ behavior, population dynamics, and environmental surroundings, which in turn are likely to affect their immune systems and exposure to pathogens. However, little work has yet been conducted on the effects of wildfires on wildlife disease. This research gap is rapidly growing in importance because wildfires are becoming globally more common and more severe, with unknown impacts on wildlife disease and unclear implications for livestock and human health in the future.


    Here, we discussed how wildfires could influence susceptibility and exposure to infection in wild animals, and the potential consequences for ecology and public health. In our framework, we outlined how habitat loss and degradation caused by fire affect animals’ immune defenses, and how behavioral and demographic responses to fire affect pathogen exposure, spread, and maintenance. We identified relative unknowns that might influence disease dynamics in unpredictable ways (e.g., through altered community composition and effects on free-living parasites). Finally, we discussed avenues for future investigations of fire-disease links.


    We hope that this review will stimulate much-needed research on the role of wildfire in influencing wildlife disease, providing an important source of information on disease dynamics in the wake of future wildfires and other natural disasters, and encouraging further integration of the fields of fire and disease ecology.

    more » « less

    Microbiome science has provided groundbreaking insights into human and animal health. Similarly, evolutionary medicine – the incorporation of eco‐evolutionary concepts into primarily human medical theory and practice – is increasingly recognised for its novel perspectives on modern diseases. Studies of host–microbe relationships have been expanded beyond humans to include a wide range of animal taxa, adding new facets to our understanding of animal ecology, evolution, behaviour, and health. In this review, we propose that a broader application of evolutionary medicine, combined with microbiome science, can provide valuable and innovative perspectives on animal care and conservation. First, we draw on classic ecological principles, such as alternative stable states, to propose an eco‐evolutionary framework for understanding variation in animal microbiomes and their role in animal health and wellbeing. With a focus on mammalian gut microbiomes, we apply this framework to populations of animals under human care, with particular relevance to the many animal species that suffer diseases linked to gut microbial dysfunction (e.g. gut distress and infection, autoimmune disorders, obesity). We discuss diet and microbial landscapes (i.e. the microbes in the animal's external environment), as two factors that are (i) proposed to represent evolutionary mismatches for captive animals, (ii) linked to gut microbiome structure and function, and (iii) potentially best understood from an evolutionary medicine perspective. Keeping within our evolutionary framework, we highlight the potential benefits – and pitfalls – of modern microbial therapies, such as pre‐ and probiotics, faecal microbiota transplants, and microbial rewilding. We discuss the limited, yet growing, empirical evidence for the use of microbial therapies to modulate animal gut microbiomes beneficially. Interspersed throughout, we propose 12 actionable steps, grounded in evolutionary medicine, that can be applied to practical animal care and management. We encourage that these actionable steps be paired with integration of eco‐evolutionary perspectives into our definitions of appropriate animal care standards. The evolutionary perspectives proposed herein may be best appreciated when applied to the broad diversity of species under human care, rather than when solely focused on humans. We urge animal care professionals, veterinarians, nutritionists, scientists, and others to collaborate on these efforts, allowing for simultaneous care of animal patients and the generation of valuable empirical data.

    more » « less
  4. Abstract Background

    Understanding how and why people interact with animals is important for the prevention and control of zoonoses. To date, studies have primarily focused on the most visible forms of human-animal contact (e.g., hunting and consumption), thereby blinding One Health researchers and practitioners to the broader range of human-animal interactions that can serve as cryptic sources of zoonotic diseases. Zootherapy, the use of animal products for traditional medicine and cultural practices, is widespread and can generate opportunities for human exposure to zoonoses. Existing research examining zootherapies omits details necessary to adequately assess potential zoonotic risks.


    We used a mixed-methods approach, combining quantitative and qualitative data from questionnaires, key informant interviews, and field notes to examine the use of zootherapy in nine villages engaged in wildlife hunting, consumption, and trade in Cross River State, Nigeria. We analyzed medicinal and cultural practices involving animals from a zoonotic disease perspective, by including details of animal use that may generate pathways for zoonotic transmission. We also examined the sociodemographic, cultural, and environmental contexts of zootherapeutic practices that can further shape the nature and frequency of human-animal interactions.


    Within our study population, people reported using 44 different animal species for zootherapeutic practices, including taxonomic groups considered to be “high risk” for zoonoses and threatened with extinction. Variation in use of animal parts, preparation norms, and administration practices generated a highly diverse set of zootherapeutic practices (n = 292) and potential zoonotic exposure risks. Use of zootherapy was patterned by demographic and environmental contexts, with zootherapy more commonly practiced by hunting households (OR = 2.47,p < 0.01), and prescriptions that were gender and age specific (e.g., maternal and pediatric care) or highly seasonal (e.g., associated with annual festivals and seasonal illnesses). Specific practices were informed by species availability and theories of healing (i.e., “like cures like” and sympathetic healing and magic) that further shaped the nature of human-animal interactions via zootherapy.


    Epidemiological investigations of zoonoses and public health interventions that aim to reduce zoonotic exposures should explicitly consider zootherapy as a potential pathway for disease transmission and consider the sociocultural and environmental contexts of their use in health messaging and interventions.

    more » « less
  5. null (Ed.)
    Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface. 
    more » « less