Nannothemis bella Uhler, 1857 (Odonata: Libellulidae), the smallest dragonflyin North America, inhabit bogs and sedge fens across their distribution, spanning fromQuebec (Canada) south to Florida and west to Minnesota and Louisiana (USA). While commonin the northern part of their range, N. bella is of conservation concern in the southernpopulations where they are disjunct and rare. Little work has been done on the ecologyand geographic conservation of this species. To fill this knowledge gap, we constructedspecies distribution models (SDMs) to analyze the spatial distribution and climatic nicheof N. bella, define factors in habitat suitability and estimate potential niche shifts underclimate change and inform conservation efforts. Our present-day SDMs indicate the dominantenvironmental elements determining habitat suitability include the proportion of siltin soil, temperature seasonality, percentage of clay and coarse components in soil, and soilclass. Our paleodistribution models show a southern distribution within the last glacialmaximum, with a shift northward 8,326 to 4,200 years ago. Our projected SDMs for 2050under RCP 2.6 and RCP 8.5 predict a significant decrease in habitat suitability throughoutthe entire range of N. bella. As such, N. bella is a species of conservation concern andconservation measures are imperative for its continued existence as a much-needed bioindicatorfor these freshwater ecosystems. Additionally, this ecological knowledge providesthe foundation for identifying population sites from which to collect N. bella for futurepopulation genetic studies.
more »
« less
Effects of climate, land use, and human population change on human–elephant conflict risk in Africa and Asia
Human–wildlife conflict is an important factor in the modern biodiversity crisis and has negative effects on both humans and wildlife (such as property destruction, injury, or death) that can impede conservation efforts for threatened species. Effectively addressing conflict requires an understanding of where it is likely to occur, particularly as climate change shifts wildlife ranges and human activities globally. Here, we examine how projected shifts in cropland density, human population density, and climatic suitability—three key drivers of human–elephant conflict—will shift conflict pressures for endangered Asian and African elephants to inform conflict management in a changing climate. We find that conflict risk (cropland density and/or human population density moving into the 90th percentile based on current-day values) increases in 2050, with a larger increase under the high-emissions “regional rivalry” SSP3 - RCP 7.0 scenario than the low-emissions “sustainability” SSP1 - RCP 2.6 scenario. We also find a net decrease in climatic suitability for both species along their extended range boundaries, with decreasing suitability most often overlapping increasing conflict risk when both suitability and conflict risk are changing. Our findings suggest that as climate changes, the risk of conflict with Asian and African elephants may shift and increase and managers should proactively mitigate that conflict to preserve these charismatic animals.
more »
« less
- Award ID(s):
- 2042526
- PAR ID:
- 10510445
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 6
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hamer, Gabriel (Ed.)Abstract Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competitive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, with the goal of capturing the outcome of interspecific competition across space by building habitat suitability maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and incorporated climatic, landscape, and human population data to identify predictors of habitat suitability for both species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suitability, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded minimum daily temperature showed significant, inverse relationships with both species. We detected minor Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk assessment and the improvement of operational applications to control container-breeding Aedes mosquitoes.more » « less
-
Abstract Crop raiding by wildlife poses major threats to both wildlife conservation and human well‐being in agroecosystems worldwide. These threats are particularly acute in many parts of Africa, where crop raiders include globally threatened megafauna such as elephants, and where smallholder agriculture is a primary source of human livelihood. One framework for understanding herbivore feeding behaviour, the forage‐maturation hypothesis, predicts that herbivores should align their movements with intermediate forage biomass (i.e., peak green‐up); this phenomenon is known as “surfing the green wave.” Crop‐raiding elephants, however, often consume not just foliage, but also fruits and tubers (e.g., maize and potatoes), which generally mature after seasonal peaks in photosynthetic activity. Thus, although elephants have been reported to surf the green wave in natural habitats, they may utilize a different strategy in cultivated landscapes by selecting crops that are “browning down.”We sought to understand the factors that underpin movement of elephants into agricultural landscapes.In Mozambique's Gorongosa National Park, we used movement data from GPS‐collared elephants, together with precipitation records, remotely sensed estimates of landscape greenness (NDVI), DNA‐based diet analysis, measurements of plant nutritional quality and survey‐based metrics of crop availability to understand spatiotemporal variation in elephant crop‐raiding behaviour.Elephants tracked peak NDVI while foraging inside the Park. During the dry season, however, when NDVI within the Park declined and availability of mature crops was high, crop raiding increased dramatically, and elephants consistently selected crop plants that were browning down while foraging in cultivated landscapes. Crops contained significantly higher digestible energy than wild food plants, but comparable (and sometimes lower) levels of digestible protein, suggesting that this foraging strategy maximized energy rather than protein intake.Our study is the first to combine GPS tracking data with high‐resolution diet analysis and community‐based reporting of crop availability to reveal fine‐scale plasticity in foraging behaviour of elephants at the human–wildlife interface. Our results extend the forage‐maturation hypothesis by showing that elephants surf waves of plant brown‐down in cultivated landscapes. These findings can aid efforts to reduce human–elephant conflict by enabling wildlife managers to prioritize mitigation actions in time and space with limited resources.more » « less
-
In recent years, air pollution has caused more than 1 million deaths per year in China, making it a major focus of public health efforts. However, future climate change may exacerbate such human health impacts by increasing the frequency and duration of weather conditions that enhance air pollution exposure. Here, we use a combination of climate, air quality, and epidemiological models to assess future air pollution deaths in a changing climate under Representative Concentration Pathway 4.5 (RCP4.5). We find that, assuming pollution emissions and population are held constant at current levels, climate change would adversely affect future air quality for >85% of China’s population (∼55% of land area) by the middle of the century, and would increase by 3% and 4% the population-weighted average concentrations of fine particulate matter (PM2.5) and ozone, respectively. As a result, we estimate an additional 12,100 and 8,900 Chinese (95% confidence interval: 10,300 to 13,800 and 2,300 to 14,700, respectively) will die per year from PM2.5 and ozone exposure, respectively. The important underlying climate mechanisms are changes in extreme conditions such as atmospheric stagnation and heat waves (contributing 39% and 6%, respectively, to the increase in mortality). Additionally, greater vulnerability of China’s aging population will further increase the estimated deaths from PM2.5 and ozone in 2050 by factors of 1 and 3, respectively. Our results indicate that climate change and more intense extremes are likely to increase the risk of severe pollution events in China. Managing air quality in China in a changing climate will thus become more challenging.more » « less
-
Abstract ContextShifts in climate and land use have dramatically reshaped ecosystems, impacting the distribution and status of wildlife populations. For many species, data gaps limit inference regarding population trends and links to environmental change. This deficiency hinders our ability to enact meaningful conservation measures to protect at risk species. ObjectivesWe investigated historical drivers of environmental niche change for three North American weasel species (American ermine, least weasel, and long-tailed weasel) to understand their response to environmental change. MethodsUsing species occurrence records and corresponding environmental data, we developed species-specific environmental niche models for the contiguous United States (1938–2021). We generated annual hindcasted predictions of the species’ environmental niche, assessing changes in distribution, area, and fragmentation in response to environmental change. ResultsWe identified a 54% decline in suitable habitat alongside high levels of fragmentation for least weasels and region-specific trends for American ermine and long-tailed weasels; declines in the West and increased suitability in the East. Climate and land use were important predictors of the environmental niche for all species. Changes in habitat amount and distribution reflected widespread land use changes over the past century while declines in southern and low-elevation areas are consistent with impacts from climatic change. ConclusionsOur models uncovered land use and climatic change as potential historic drivers of population change for North American weasels and provide a basis for management recommendations and targeted survey efforts. We identified potentially at-risk populations and a need for landscape-level planning to support weasel populations amid ongoing environmental changes.more » « less
An official website of the United States government

