We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the critical temperature. We observe a nonmonotonous dependence of the chain resistance on both temperature and magnetic field, with a pronounced resistance peak at temperatures at which some but not all islands are superconducting. We explain this phenomenon by the inhomogeneity of the chains, in which neighboring superconducting islands have slightly different critical temperatures. We argue that the Giaever’s resistance divergence can also occur in the zero-temperature limit. Such quantum transition can occur if the magnetic field is tuned such that it suppresses superconductivity in the islands with the weaker critical field, while the islands with stronger energy gap remain superconducting. In such a field, the system acts as a chain of S-I-N junctions.
more »
« less
Thermoelectric current in a graphene Cooper pair splitter
Abstract Generation of electric voltage in a conductor by applying a temperature gradient is a fundamental phenomenon called the Seebeck effect. This effect and its inverse is widely exploited in diverse applications ranging from thermoelectric power generators to temperature sensing. Recently, a possibility of thermoelectricity arising from the interplay of the non-local Cooper pair splitting and the elastic co-tunneling in the hybrid normal metal-superconductor-normal metal structures was predicted. Here, we report the observation of the non-local Seebeck effect in a graphene-based Cooper pair splitting device comprising two quantum dots connected to an aluminum superconductor and present a theoretical description of this phenomenon. The observed non-local Seebeck effect offers an efficient tool for producing entangled electrons.
more »
« less
- Award ID(s):
- 1809188
- PAR ID:
- 10250433
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal–superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics. Here, we present a systematic experimental study of compressed elemental sulfur, an undoped three-dimensional (3D) high-pressure superconductor, with detailed measurements of electrical resistance as a function of temperature, magnetic field, and current. The anomalous resistance peak observed in this 3D system is interpreted based on an empirical model of a metal–bosonic insulator–superconductor transition, potentially driven by vortex dynamics under magnetic field and energy dissipation processes. These findings offer a fresh platform for theoretical analysis of the decades-long enigmatic of the underlying mechanism of this phenomenon.more » « less
-
Abstract The suggestion that non-reciprocal critical current (NRC) may be an intrinsic property of non-centrosymmetric superconductors has generated renewed theoretical and experimental interest motivated by an analogy with the non-reciprocal resistivity due to the magnetochiral effect in uniform materials with broken spatial and time-reversal symmetry. Theoretically it has been understood that terms linear in the Cooper pair momentum do not contribute to NRC, although the role of higher-order terms remains unclear. In this work we show that critical current non-reciprocity is a generic property of multilayered superconductor structures in the presence of magnetic field-generated diamagnetic currents. In the regime of an intermediate coupling between the layers, the Josephson vortices are predicted to form at high fields and currents. Experimentally, we report the observation of NRC in nanowires fabricated from InAs/Al heterostructures. The effect is independent of the crystallographic orientation of the wire, ruling out an intrinsic origin of NRC. Non-monotonic NRC evolution with magnetic field is consistent with the generation of diamagnetic currents and formation of the Josephson vortices. This extrinsic NRC mechanism can be used to design novel devices for superconducting circuits.more » « less
-
Crystalline graphene heterostructures, namely, Bernal bilayer graphene (BBLG) and rhombohedral trilayer graphene (RTLG), for example, subject to perpendicular electric displacement fields, display a rich confluence of competing orders, resulting in a valley-degenerate, spin-polarized half-metal at moderate doping, and a spin- and valley-polarized (nondegenerate) quarter-metal at lower doping. Here we show that such a quarter-metal can be susceptible toward the nucleation of a unique spin- and valley-polarized superconducting ground state, accommodating odd-parity (dominantly 𝑝 wave in BBLG and 𝑓 wave in RTLG) interlayer Cooper pairs that break the translational symmetry, giving rise to a Kekule (in BBLG) or columnar (in RTLG) pair density wave. Due to the trigonal warping in the normal state, the superconducting ground state produces threefold rotationally symmetric isolated Fermi rings of normal fermions, which can manifest via linear in temperature scaling of the specific heat. We present scaling of the zero-temperature pairing amplitude and the transition temperature of such pair density wave in the presence of trigonally warped disconnected, annular, and simply connected Fermi rings in the normal state, subject to an effective attractive interaction within a mean-field approximation.more » « less
-
When an electron is incident on a superconductor from a metal, it is reflected as a hole in a process called Andreev reflection. If the metal N is sandwiched between two superconductors S in an SNS junction, multiple Andreev reflections (MARs) occur. We have found that, in SNS junctions with high transparency ( τ → 1 ) based on the Dirac semimetal MoTe 2 , the MAR features are observed with exceptional resolution. By tuning the phase difference φ between the bracketing Al superconductors, we establish that the MARs coexist with a Josephson supercurrent I s = I A sin φ . As we vary the junction voltage V , the supercurrent amplitude I A varies in step with the MAR order n , revealing a direct relation between them. Two successive Andreev reflections serve to shuttle a Cooper pair across the junction. If the pair is shuttled coherently, it contributes to I s . The experiment measures the fraction of pairs shuttled coherently vs. V . Surprisingly, superconductivity in MoTe 2 does not affect the MAR features.more » « less
An official website of the United States government

