Abstract Increasing demand for wearable healthcare synergistically advances the field of electronic textiles, or e‐textiles, allowing for ambulatory monitoring of vital health signals. Despite great promise, the pragmatic deployment of e‐textiles in clinical practice remains challenged due to the lack of a method in producing custom‐designed e‐textiles at high spatial resolution across a large area. To this end, a programmable dual‐regime spray that enables the direct custom writing of functional nanoparticles into arbitrary fabrics at sub‐millimeter resolution over meter scale is employed. The resulting e‐textiles retain the intrinsic fabric properties in terms of mechanical flexibility, water‐vapor permeability, and comfort against multiple uses and laundry cycles. The e‐textiles tightly fit various body sizes and shapes to support the high‐fidelity recording of physiological and electrophysiological signals on the skin under ambulatory conditions. Pilot field tests in a remote health‐monitoring setting with a large animal, such as a horse, demonstrate the scalability and utility of the e‐textiles beyond conventional devices. This approach will be suitable for the rapid prototyping of custom e‐textiles tailored to meet various clinical needs.
more »
« less
Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging
Abstract The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains. Herein, we report sponge-like poroelastic silicone composites adaptable for high-precision direct writing of custom-designed stretchable biosensors, which are soft and insensitive to strains. Their unique structural properties yield a robust coupling to living tissues, enabling high-fidelity recording of spatiotemporal electrophysiological activity and real-time ultrasound imaging for visual feedback. In vivo evaluations of custom-fit biosensors in a murine acute myocardial infarction model demonstrate a potential clinical utility in the simultaneous intraoperative recording and imaging on the epicardium, which may guide definitive surgical treatments.
more »
« less
- Award ID(s):
- 1944480
- PAR ID:
- 10250468
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stretchable three-dimensional (3D) penetrating microelectrode arrays have potential utility in various fields, including neuroscience, tissue engineering, and wearable bioelectronics. These 3D microelectrode arrays can penetrate and conform to dynamically deforming tissues, thereby facilitating targeted sensing and stimulation of interior regions in a minimally invasive manner. However, fabricating custom stretchable 3D microelectrode arrays presents material integration and patterning challenges. In this study, we present the design, fabrication, and applications of stretchable microneedle electrode arrays (SMNEAs) for sensing local intramuscular electromyography signals ex vivo. We use a unique hybrid fabrication scheme based on laser micromachining, microfabrication, and transfer printing to enable scalable fabrication of individually addressable SMNEA with high device stretchability (60 to 90%). The electrode geometries and recording regions, impedance, array layout, and length distribution are highly customizable. We demonstrate the use of SMNEAs as bioelectronic interfaces in recording intramuscular electromyography from various muscle groups in the buccal mass ofAplysia.more » « less
-
Abstract Soft (flexible and stretchable) biosensors have great potential in real-time and continuous health monitoring of various physiological factors, mainly due to their better conformability to soft human tissues and organs, which maximizes data fidelity and minimizes biological interference. Most of the early soft sensors focused on sensing physical signals. Recently, it is becoming a trend that novel soft sensors are developed to sense and monitor biochemical signalsin situin real biological environments, thus providing much more meaningful data for studying fundamental biology and diagnosing diverse health conditions. This is essential to decentralize the healthcare resources towards predictive medicine and better disease management. To meet the requirements of mechanical softness and complex biosensing, unconventional materials, and manufacturing process are demanded in developing biosensors. In this review, we summarize the fundamental approaches and the latest and representative design and fabrication to engineer soft electronics (flexible and stretchable) for wearable and implantable biochemical sensing. We will review the rational design and ingenious integration of stretchable materials, structures, and signal transducers in different application scenarios to fabricate high-performance soft biosensors. Focus is also given to how these novel biosensors can be integrated into diverse important physiological environments and scenariosin situ, such as sweat analysis, wound monitoring, and neurochemical sensing. We also rethink and discuss the current limitations, challenges, and prospects of soft biosensors. This review holds significant importance for researchers and engineers, as it assists in comprehending the overarching trends and pivotal issues within the realm of designing and manufacturing soft electronics for biochemical sensing.more » « less
-
A strain-induced electrically conductive liquid metal emulsion for the programmable assembly of soft conductive composites is reported. This emulsion exhibits the shear yielding and shear thinning rheology required for direct ink writing. Examples of complex self-supported 3D printed structures with spanning features are presented to demonstrate the 3D printability of this emulsion. Stretchable liquid metal composites are fabricated by integrating this emulsion into a multi-material printing process with a 3D printable elastomer. The as-printed composites exhibit a low electrical conductivity but can be transformed into highly conductive composites by a single axial strain at low stresses ([Formula: see text] 0.3 MPa), an order of magnitude lower than other mechanical sintering approaches. The effects of axial strain and cyclic loading on the electrical conductivities of these composites are characterized. The electrical conductivity increases with activation strain, with a maximum observed relaxed conductivity of 8.61 × 105S⋅m−1, more than 300% higher than other mechanical sintering approaches. The electrical conductivity of these composites reaches a steady state for each strain after one cycle, remaining stable with low variation ([Formula: see text] standard deviation) over 1000 cycles. The strain sensitivities of these composites are quantitatively analyzed. All samples exhibit strain sensitivities that are lower than a bulk conductor throughout all strains. The printed composites showed low hysteresis at high strains, and high hysteresis at low strains, which may be influenced by the emulsion internal structure. The utility of these composites is shown by employing them as wiring into a single fabrication process for a stretchable array of LEDs.more » « less
-
Abstract Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil–water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22–25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings. One-Sentence SummaryThis study demonstrates the use of microfabricated electrochemical impedance spectroscopy (EIS) biosensors for real-time monitoring and treatment evaluation of biofilm growth, offering valuable insights for biofilm control in industrial settings.more » « less
An official website of the United States government
