skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Programmable Dual‐Regime Spray for Large‐Scale and Custom‐Designed Electronic Textiles
Abstract Increasing demand for wearable healthcare synergistically advances the field of electronic textiles, or e‐textiles, allowing for ambulatory monitoring of vital health signals. Despite great promise, the pragmatic deployment of e‐textiles in clinical practice remains challenged due to the lack of a method in producing custom‐designed e‐textiles at high spatial resolution across a large area. To this end, a programmable dual‐regime spray that enables the direct custom writing of functional nanoparticles into arbitrary fabrics at sub‐millimeter resolution over meter scale is employed. The resulting e‐textiles retain the intrinsic fabric properties in terms of mechanical flexibility, water‐vapor permeability, and comfort against multiple uses and laundry cycles. The e‐textiles tightly fit various body sizes and shapes to support the high‐fidelity recording of physiological and electrophysiological signals on the skin under ambulatory conditions. Pilot field tests in a remote health‐monitoring setting with a large animal, such as a horse, demonstrate the scalability and utility of the e‐textiles beyond conventional devices. This approach will be suitable for the rapid prototyping of custom e‐textiles tailored to meet various clinical needs.  more » « less
Award ID(s):
1928784
PAR ID:
10391781
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
9
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice. 
    more » « less
  2. Abstract Cardiovascular diseases are the leading cause of death globally. Noninvasive, accurate, and continuous cardiovascular monitoring can enable the preemptive detection of heart diseases and timely intervention to prevent serious cardiac complications. However, unobtrusive, ambulatory, and comprehensive cardiac monitoring is still a challenge as conventional electronics are rigid, heavy, or consume too much power for long‐term measurement. This work presents a thin (200 µm), stretchable (20%), lightweight (2.5 g), wireless, and low‐power (<3 mW) cardiac monitoring device that conforms to the human chest like a temporary tattoo sticker, correspondingly known as an e‐tattoo. This chest e‐tattoo features dual‐mode electro‐mechanical sensing—bio‐electric cardiac signals via electrocardiography and mechanical cardiac rhythm via seismocardiography. A unique peripheral synchronization strategy between the two sensors enables the measurement of systolic time intervals like the pre‐ejection period and the left ventricular ejection time with high accuracy (error = −0.44 ± 8.74 ms) while consuming very low power. The e‐tattoo is validated against clinically approved gold‐standard instruments on five human subjects. The good wearability and low power consumption of this e‐tattoo permit 24‐h continuous ambulatory monitoring. 
    more » « less
  3. Abstract The severe mismatch between solid bioelectronics and dynamic biological tissues has posed enduring challenges in the biomonitoring community. Here, we developed a reconfigurable liquid cardiac sensor capable of adapting to dynamic biological tissues, facilitating ambulatory cardiac monitoring unhindered by motion artifacts or interference from other biological activities. We employed an ultrahigh-resolution 3D scanning technique to capture tomographic images of the skin on the wrist. Then, we established a theoretical model to gain a deep understanding of the intricate interaction between our reconfigurable sensor and dynamic biological tissues. To properly elucidate the advantages of this sensor, we conducted cardiac monitoring alongside benchmarks such as the electrocardiogram. The liquid cardiac sensor was demonstrated to produce stable signals of high quality (23.1 dB) in ambulatory settings. 
    more » « less
  4. Abstract Electronic textiles (e‐textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high‐performance stretchable e‐textiles with good abrasion resistance and high‐resolution aesthetic patterns for high‐throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e‐textile fabricated via screen printing of the water‐based silver fractal dendrites conductive ink. The as‐fabricated e‐textiles spray‐coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq−1, high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e‐textiles can be explored as strain sensors and ultralow voltage‐driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e‐textiles for human motion detection and body‐temperature management. The printed e‐textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications. 
    more » « less
  5. Wearable health devices have transformed the land-scape of vital sign monitoring by enabling continuous, unob-trusive data collection. These compact and lightweight devices bypass the need for large, specialized instruments, facilitating frequent and comprehensive health monitoring essential for di-agnosing various medical conditions. Researchers are leveraging innovative techniques to sense bodily functions through external signals, such as using acoustic signals for joint health and repurposing low-cost sensors like IMUs, temperature sensors, and microphones as biosensors. These advancements aim to create more affordable and widespread health monitoring systems than traditional, costly biosensors. In this work, we present HealthHub, a versatile wearable health prototyping toolkit designed to expedite the development and testing of wearable health devices. HealthHub's modularity and flexibility are demonstrated by its array of onboard sensors and its support for custom snap-on boards that enhance sensing capabilities via the onboard ADC. Our evaluation of HealthHub included testing its power consumption and performance in measuring respiration, where it functioned as a pendant. The system operated for three days on a single coin cell battery, recording data at high sample rates and fidelity. HealthHub proves to be a lightweight, compact, and highly adaptable platform for developing wearable health devices. Its robust performance and extendable design make it an invaluable tool for researchers and developers in wearable health technol-ogy, facilitating the rapid conversion of innovative ideas into functional prototypes. 
    more » « less