skip to main content


Title: Electrochemically switchable polymerization from surface-anchored molecular catalysts
Redox-switchable polymerizations of lactide and epoxides were extended to the solid state by anchoring an iron-based polymerization catalyst to TiO 2 nanoparticles. The reactivity of the molecular complexes and their redox-switching characteristics were maintained in the solid-state. These properties resulted in surface-initiated polymerization reactions that produced polymer brushes whose chemical composition is dictated by the oxidation state of the iron-based complex. Depositing the catalyst-functionalized TiO 2 nanoparticles on fluorine-doped tin oxide resulted in an electrically addressable surface that could be used to demonstrate spatial control in redox-switchable polymerization reactions. By using a substrate that contained two electrically isolated domains wherein one domain was exposed to an oxidizing potential, patterns of surface-bound polyesters and polyethers were accessible through sequential application of lactide and cyclohexene oxide. The differentially functionalized surfaces demonstrated distinct physical properties that illustrated the promise for using the method to pattern surfaces with multiple, chemically distinct polymer brushes.  more » « less
Award ID(s):
2023955
NSF-PAR ID:
10250650
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox‐switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran‐co‐cyclohexene oxide) (poly(THF‐co‐CHO) copolymer as the mid‐block. The orthogonal reactivity induced by changing the oxidation state of the iron‐based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l‐lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of −60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d‐lactic acid) (PDLA) end‐blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3and ZnCl2/PEG under reactive distillation conditions.

     
    more » « less
  2. Abstract

    In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox‐switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran‐co‐cyclohexene oxide) (poly(THF‐co‐CHO) copolymer as the mid‐block. The orthogonal reactivity induced by changing the oxidation state of the iron‐based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l‐lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of −60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d‐lactic acid) (PDLA) end‐blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3and ZnCl2/PEG under reactive distillation conditions.

     
    more » « less
  3. Abstract

    Block copolymer brushes are of great interest due to their rich phase behavior and value‐added properties compared to homopolymer brushes. Traditional synthesis involves grafting‐to and grafting‐from methods. In this work, a recently developed “polymer‐single‐crystal‐assisted‐grafting‐to” method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)‐b‐poly(l‐lactide)‐b‐poly(3‐(triethoxysilyl)propyl methacrylate) (PEO‐b‐PLLA‐b‐PTESPMA) is synthesized with PLLA as the brush morphology‐directing component and PTESPMA as the anchoring block. PEO‐b‐PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm−2from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well‐defined block copolymer brushes.

     
    more » « less
  4. Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate and coalesce at 400 °C. AFM revealed that the particles on the sp 3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe 3+ oxidation state and two different oxygen species, Fe–O and Fe–OH/Fe–OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst. 
    more » « less
  5. Abstract

    A polymer's properties and functionality are directly related to the constituent monomers from which it was synthesized, the order in which these monomers are assembled, and the degree to which monomers are enchained. Furthermore, a standing challenge in the field of polymer synthesis is to provide temporal polymerization control that can be leveraged to access a variety of advanced polymer architectures. Though many polymer classes are attractive for various applications, polyesters have drawn considerable recent interest due to the potential of these materials to provide biodegradable alternatives to other, often petroleum derived, polymeric materials that create concerning, long‐term environmental impacts. Many of these biodegradable polyesters can be produced via the transition‐metal catalyzed ring‐opening polymerization of cyclic ester and cyclic ether monomers. Through researchers' quest to access precise and well‐defined polyesters via ring‐opening polymerization, an intriguing class of stimuli‐responsive catalysts have emerged. More specifically, catalyst systems have been developed in which their electronic nature may be modulated via either ligand‐based or active metal site‐based redox‐switchability. These redox‐switchable catalysts have been shown to exhibit altered chemoselectivity and kinetic modulation as a function of catalyst redox‐state. Herein, we will discuss the beginnings, select recent advancements, and an outlook on the field of redox‐switchable ring‐opening polymerizations.

     
    more » « less