skip to main content


Title: Permafrost thaw lake methane flux estimates using GPR
This research demonstrates a new measurement and scaling approach to constrain the estimates of methane (CH4) fluxes emitted from permafrost thaw (thermokarst) lakes. Permafrost is estimated to store about 20% of the total terrestrial carbon (C) stock. Permafrost thawing releases C in part as CH4, however, there are large uncertainties in the global CH4 budget that limit the accuracy of climate change projections. Estimating how much C is released from permafrost is critical to overcome this knowledge gap. Lake CH4 fluxes are estimated by combining direct observations, geophysical mapping and satellite remote sensing along with a scaling strategy based on lake expansion rate. This research contributes to advance the understanding of CH4 fluxes from thermokarst lakes and improve atmospheric C models.  more » « less
Award ID(s):
1823717
NSF-PAR ID:
10250651
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
18th International Conference on Ground Penetrating Radar
Page Range / eLocation ID:
89-92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thermokarst lakes accelerate deep permafrost thaw and the mobilization of previously frozen soil organic carbon. This leads to microbial decomposition and large releases of carbon dioxide (CO2) and methane (CH4) that enhance climate warming. However, the time scale of permafrost-carbon emissions following thaw is not well known but is important for understanding how abrupt permafrost thaw impacts climate feedback. We combined field measurements and radiocarbon dating of CH4ebullition with (a) an assessment of lake area changes delineated from high-resolution (1–2.5 m) optical imagery and (b) geophysical measurements of thaw bulbs (taliks) to determine the spatiotemporal dynamics of hotspot-seep CH4ebullition in interior Alaska thermokarst lakes. Hotspot seeps are characterized as point-sources of high ebullition that release14C-depleted CH4from deep (up to tens of meters) within lake thaw bulbs year-round. Thermokarst lakes, initiated by a variety of factors, doubled in number and increased 37.5% in area from 1949 to 2009 as climate warmed. Approximately 80% of contemporary CH4hotspot seeps were associated with this recent thermokarst activity, occurring where 60 years of abrupt thaw took place as a result of new and expanded lake areas. Hotspot occurrence diminished with distance from thermokarst lake margins. We attribute older14C ages of CH4released from hotspot seeps in older, expanding thermokarst lakes (14CCH420 079 ± 1227 years BP, mean ± standard error (s.e.m.) years) to deeper taliks (thaw bulbs) compared to younger14CCH4in new lakes (14CCH48526 ± 741 years BP) with shallower taliks. We find that smaller, non-hotspot ebullition seeps have younger14C ages (expanding lakes 7473 ± 1762 years; new lakes 4742 ± 803 years) and that their emissions span a larger historic range. These observations provide a first-order constraint on the magnitude and decadal-scale duration of CH4-hotspot seep emissions following formation of thermokarst lakes as climate warms.

     
    more » « less
  2. Abstract

    Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period.

     
    more » « less
  3. Atmospheric methane (CH4) concentrations have gone through rapid changes since the last deglaciation; however, the reasons for abrupt increases around 14,700 and 11,600 years before present (yrs BP) are not fully understood. Concurrent with deglaciation, sea-level rise gradually inundated vast areas of the low-lying Beringian shelf. This transformation of what was once a terrestrial-permafrost tundra-steppe landscape, into coastal, and subsequently, marine environments led to new sources of CH4 from the region to the atmosphere. Here, we estimate, based on an extended geospatial analysis, the area of Beringian coastal wetlands in 1000-year intervals and their potential contribution to northern CH4 flux (based on present day CH4 fluxes from coastal wetland) during the past 20,000 years. At its maximum (∼14,000 yrs BP) we estimated CH4 fluxes from Beringia coastal wetlands to be 3.5 (+4.0/-1.9) Tg CH4 yr−1. This shifts the onset of CH4 fluxes from northern regions earlier, towards the Bølling-Allerød, preceding peak emissions from the formation of northern high latitude thermokarst lakes and wetlands. Emissions associated with the inundation of Beringian coastal wetlands better align with polar ice core reconstructions of northern hemisphere sources of atmospheric CH4 during the last deglaciation, suggesting a connection between rising sea level, coastal wetland expansion, and enhanced CH4 emissions. 
    more » « less
  4. Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types. 
    more » « less
  5. Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types. 
    more » « less