skip to main content


Title: Privacy Preserving Misbehavior Detection in IoV Using Federated Machine Learning
Data falsification attack in Vehicular Ad hoc Networks (VANET) for the Internet of Vehicles (IoV) is achieved by corrupting the data exchanged between nodes with false information. Data is the most valuable asset these days from which many analyses and results can be drawn out. But the privacy concern raised by users has become the greatest hindrance in performing data analysis. In IoV, misbehavior detection can be performed by creating a machine learning model from basic safety message (BSM) dataset of vehicles. We propose a privacy-preserving misbehavior detecting system for IoV using Federated Machine Learning. Vehicles in VANET for IoV are given the initial dull model to locally train using their own local data. On doing this we get a collective smart model that can classify Position Falsification attack in VANET using the data generated by each vehicle. All this is done without actually sharing the data with any third party to perform analysis. In this paper, we compare the performance of the attack detection model trained by using a federated and central approach. This training method trains the model on a different kind of position falsification attack by using local BSM data generated on each vehicle.  more » « less
Award ID(s):
2039583 1828811
NSF-PAR ID:
10279535
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated Learning (FL) allows individual clients to train a global model by aggregating local model updates each round. This results in collaborative model training while main-taining the privacy of clients' sensitive data. However, malicious clients can join the training process and train with poisoned data or send artificial model updates in targeted poisoning attacks. Many defenses to targeted poisoning attacks rely on anomaly-detection based metrics which remove participants that deviate from the majority. Similarly, aggregation-based defenses aim to reduce the impact of outliers, while L2-norm clipping tries to scale down the impact of malicious models. However, oftentimes these defenses misidentify benign clients as malicious or only work under specific attack conditions. In our paper, we examine the effectiveness of two anomaly -detection metrics on three different aggregation methods, in addition to the presence of L2-norm clipping and weight selection, across two different types of attacks. We also combine different defenses in order to examine their interaction and examine each defense when no attack is present. We found minimum aggregation to be the most effective defense against label-flipping attacks, whereas both minimum aggregation and geometric median worked well against distributed backdoor attacks. Using random weight selection significantly deteriorated defenses against both attacks, whereas the use of clipping made little difference. Finally, the main task accuracy was directly correlated with the BA in the label-flipping attack and generally was close to the MA in benign scenarios. However, in the DBA the MA and BA are inversely correlated and the MA fluctuates greatly. 
    more » « less
  2. Federated Learning enables a population of clients, working with a trusted server, to collaboratively learn a shared machine learning model while keeping each client's data within its own local systems. This reduces the risk of exposing sensitive data, but it is still possible to reverse engineer information about a client's private data set from communicated model parameters. Most federated learning systems therefore use differential privacy to introduce noise to the parameters. This adds uncertainty to any attempt to reveal private client data, but also reduces the accuracy of the shared model, limiting the useful scale of privacy-preserving noise. A system can further reduce the coordinating server's ability to recover private client information, without additional accuracy loss, by also including secure multiparty computation. An approach combining both techniques is especially relevant to financial firms as it allows new possibilities for collaborative learning without exposing sensitive client data. This could produce more accurate models for important tasks like optimal trade execution, credit origination, or fraud detection. The key contributions of this paper are: We present a privacy-preserving federated learning protocol to a non-specialist audience, demonstrate it using logistic regression on a real-world credit card fraud data set, and evaluate it using an open-source simulation platform which we have adapted for the development of federated learning systems. 
    more » « less
  3. null (Ed.)
    Internet of Vehicles (IoV) in 5G is regarded as a backbone for intelligent transportation system in smart city, where vehicles are expected to communicate with drivers, with road-side wireless infrastructure, with other vehicles, with traffic signals and different city infrastructure using vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications. In IoV, the network topology changes based on drivers' destination, intent or vehicles' movements and road structure on which the vehicles travel. In IoV, vehicles are assumed to be equipped with computing devices to process data, storage devices to store data and communication devices to communicate with other vehicles or with roadside infrastructure (RSI). It is vital to authenticate data in IoV to make sure that legitimate data is being propagated in IoV. Thus, security stands as a vital factor in IoV. The existing literature contains some limitations for robust security in IoV such as high delay introduced by security algorithms, security without privacy, unreliable security and reduced overall communication efficiency. To address these issues, this paper proposes the Elliptic Curve Cryptography (ECC) based Ant Colony Optimization Ad hoc On-demand Distance Vector (ACO-AODV) routing protocol which avoids suspicious vehicles during message dissemination in IoV. Specifically, our proposed protocol comprises three components: i) certificate authority (CA) which maps vehicle's publicly available info such as number plates with cryptographic keys using ECC; ii) malicious vehicle (MV) detection algorithm which works based on trust level calculated using status message interactions; and iii) secure optimal path selection in an adaptive manner based on the intent of communications using ACO-AODV that avoids malicious vehicles. Experimental results illustrate that the proposed approach provides better results than the existing approaches. 
    more » « less
  4. We consider the problem of predicting cellular network performance (signal maps) from measurements collected by several mobile devices. We formulate the problem within the online federated learning framework: (i) federated learning (FL) enables users to collaboratively train a model, while keeping their training data on their devices; (ii) measurements are collected as users move around over time and are used for local training in an online fashion. We consider an honest-but-curious server, who observes the updates from target users participating in FL and infers their location using a deep leakage from gradients (DLG) type of attack, originally developed to reconstruct training data of DNN image classifiers. We make the key observation that a DLG attack, applied to our setting, infers the average location of a batch of local data, and can thus be used to reconstruct the target users' trajectory at a coarse granularity. We build on this observation to protect location privacy, in our setting, by revisiting and designing mechanisms within the federated learning framework including: tuning the FL parameters for averaging, curating local batches so as to mislead the DLG attacker, and aggregating across multiple users with different trajectories. We evaluate the performance of our algorithms through both analysis and simulation based on real-world mobile datasets, and we show that they achieve a good privacy-utility tradeoff. 
    more » « less
  5. A resilient positioning, navigation, and timing (PNT) system is a necessity for the robust navigation of autonomous vehicles (AVs). A global navigation satellite system (GNSS) provides satellite-based PNT services. However, a spoofer can tamper the authentic GNSS signal and could transmit wrong position information to an AV. Therefore, an AV must have the capability of real-time detection of spoofing attacks related to PNT receivers, whereby it will help the end-user (the AV in this case) to navigate safely even if the GNSS is compromised. This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack detection method using low-cost in-vehicle sensor data. We have utilized the Honda Research Institute Driving Dataset to create attack and non-attack datasets to develop a deep RL model and have evaluated the performance of the deep RL-based attack detection model. We find that the accuracy of the deep RL model ranges from 99.99% to 100%, and the recall value is 100%. Furthermore, the precision ranges from 93.44% to 100%, and the f1 score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL model is effective in turn-by-turn spoofing attack detection. 
    more » « less