skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Charge order textures induced by non-linear couplings in a half-doped manganite
Abstract The self-organization of strongly interacting electrons into superlattice structures underlies the properties of many quantum materials. How these electrons arrange within the superlattice dictates what symmetries are broken and what ground states are stabilized. Here we show that cryogenic scanning transmission electron microscopy (cryo-STEM) enables direct mapping of local symmetries and order at the intra-unit-cell level in the model charge-ordered system Nd1/2Sr1/2MnO3. In addition to imaging the prototypical site-centered charge order, we discover the nanoscale coexistence of an exotic intermediate state which mixes site and bond order and breaks inversion symmetry. We further show that nonlinear coupling of distinct lattice modes controls the selection between competing ground states. The results demonstrate the importance of lattice coupling for understanding and manipulating the character of electronic self-organization and that cryo-STEM can reveal local order in strongly correlated systems at the atomic scale.  more » « less
Award ID(s):
1719875
PAR ID:
10250753
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Exciton dynamics can be strongly affected by lattice vibrations through electron-phonon coupling. This is rarely explored in two-dimensional magnetic semiconductors. Focusing on bilayer CrI3, we first show the presence of strong electron-phonon coupling through temperature-dependent photoluminescence and absorption spectroscopy. We then report the observation of periodic broad modes up to the 8th order in Raman spectra, attributed to the polaronic character of excitons. We establish that this polaronic character is dominated by the coupling between the charge-transfer exciton at 1.96 eV and a longitudinal optical phonon at 120.6 cm−1. We further show that the emergence of long-range magnetic order enhances the electron-phonon coupling strength by ~50% and that the transition from layered antiferromagnetic to ferromagnetic order tunes the spectral intensity of the periodic broad modes, suggesting a strong coupling among the lattice, charge and spin in two-dimensional CrI3. Our study opens opportunities for tailoring light-matter interactions in two-dimensional magnetic semiconductors. 
    more » « less
  2. We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are chosen so that they match with those of the spinons of the π -flux spin liquid. Global symmetries of all gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average background π -flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays several confining/Higgs phases: a nodal d -wave superconductor, and states with Néel, valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions between these phases that are very likely described by ( 2 + 1 ) -dimensional deconfined conformal gauge theories, and we present large flavor expansions for such theories. These include the phenomenologically attractive case of a transition between a conventional insulator with a charge gap and Néel order, and a conventional d -wave superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a bicritical point at the junction of Néel, valence bond solid (Kekulé), and Dirac semimetal phases. Published by the American Physical Society2024 
    more » « less
  3. Abstract Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba2Na1−xCaxOsO6(0 < x < 1), unveiling the formation ofspin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d1spin-orbital Jeff = 3/2 levels, characteristic of the parent compound Ba2NaOsO6(BNOO), into a bipolaron 5d2Jeff = 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d1BNOO to d2Ba2CaOsO6(BCOO). 
    more » « less
  4. Generalized symmetries often appear in the form of emergent symmetries in low energy effective descriptions of quantum many-body systems. Non-invertible symmetries are a particularly exotic class of generalized symmetries, in that they are implemented by transformations that do not form a group. Such symmetries appear generically in gapless states of quantum matter constraining the low-energy dynamics. To provide a UV-complete description of such symmetries, it is useful to construct lattice models that respect these symmetries exactly. In this paper, we discuss two families of one-dimensional lattice Hamiltonians with finite on-site Hilbert spaces: one with (invertible) $$S^{\,}_3$$ symmetry and the other with non-invertible $$\mathsf{Rep}(S^{\,}_3)$$ symmetry. Our models are largely analytically tractable and demonstrate all possible spontaneous symmetry breaking patterns of these symmetries. Moreover, we use numerical techniques to study the nature of continuous phase transitions between the different symmetry-breaking gapped phases associated with both symmetries. Both models have self-dual lines, where the models are enriched by (intrinsic) non-invertible symmetries generated by Kramers-Wannier-like duality transformations. We provide explicit lattice operators that generate these non-invertible self-duality symmetries. We show that the enhanced symmetry at the self-dual lines is described by a 2+1D symmetry-topological-order (SymTO) of type $$\overline{\mathrm{JK}}^{\,}_4\times \mathrm{JK}^{\,}_4$$. The condensable algebras of the SymTO determine the allowed gapped and gapless states of the self-dual $$S^{\,}_3$$-symetric and $$\mathsf{Rep}(S^{\,}_3)$$-symmetric models. 
    more » « less
  5. We analyze lattice Hamiltonian systems whose global symmetries have ’t Hooft anomalies. As is common in the study of anomalies, they are probed by coupling the system to classical background gauge fields. For flat fields (vanishing field strength), the nonzero spatial components of the gauge fields can be thought of as twisted boundary conditions, or equivalently, as topological defects. The symmetries of the twisted Hilbert space and their representations capture the anomalies. We demonstrate this approach with a number of examples. In some of them, the anomalous symmetries are internal symmetries of the lattice system, but they do not act on-site. (We clarify the notion of “on-site action.”) In other cases, the anomalous symmetries involve lattice translations. Using this approach we frame many known and new results in a unified fashion. In this work, we limit ourselves to 1+1d systems with a spatial lattice. In particular, we present a lattice system that flows to the c=1 compact boson system with any radius (no BKT transition) with the full internal symmetry of the continuum theory, with its anomalies and its T-duality. As another application, we analyze various spin chain models and phrase their Lieb-Shultz-Mattis theorem as an ’t Hooft anomaly matching condition. We also show in what sense filling constraints like Luttinger theorem can and cannot be viewed as reflecting an anomaly. As a by-product, our understanding allows us to use information from the continuum theory to derive some exact results in lattice model of interest, such as the lattice momenta of the low-energy states. 
    more » « less