skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contextual Interference Effect in Motor Skill Learning: An Empirical and Computational Investigation
To efficiently learn and retain motor skills, we can introduce contextual interference through interleaved practice. Interleaving tasks or stimuli initially hinders performance but leads to superior long-term retention. It is not yet clear if implicitly learned information also benefits from interleaving and how interleaved practice changes the representation of skills. The present study used a serial reaction time task where participants practiced three 8-item sequences that were either interleaved or blocked on Day 1 (training) and Day 2 (testing). An explicit recall test allowed us to post-hoc sort participants into two groups of learners: implicit learners recalled less items than did explicit learners. Significant decreasing monotonic trends, indicating successful learning, were observed in both training groups and both groups of learners. We found support for the benefit of interleaved practice on retention of implicit sequence learning, indicating that the benefit of interleaved practice does not depend on explicit memory retrieval. A Bayesian Sequential Learning model was adopted to model human performance. Both empirical and computational results suggest that explicit knowledge of the sequence was detrimental to retention when the sequences were blocked, but not when they were interleaved, suggesting that contextual interference may be a protective factor of interference of explicit knowledge. Slower learning in the interleaved condition may result in better retention and reduced interference of explicit knowledge on performance.  more » « less
Award ID(s):
1634157
PAR ID:
10250913
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Annual Conference of the Cognitive Science Society
Volume:
42
ISSN:
1069-7977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Compared to blocked practice, interleaved practice of different tasks leads to superior long-term retention despite poorer initial acquisition performance. This phenomenon, the contextual interference effect, is well documented in various domains but it is not yet clear if it persists in the absence of explicit knowledge in terms of fine motor sequence learning. Additionally, while there is some evidence that interleaved practice leads to improved transfer of learning to similar actions, transfer of implicit motor sequence learning has not been explored. The present studies used a serial reaction time task where participants practiced three different eight-item sequences that were either interleaved or blocked on Day 1 (training) and Day 2 (testing). In Experiment 1, the retention of the three training sequences was tested on Day 2 and in Experiment 2, three novel sequences were performed on Day 2 to measure transfer. We assessed whether subjects were aware of the sequences to determine whether the benefit of interleaved practice extends to implicitly learned sequences. Even for participants who reported no awareness of the sequences, interleaving led to a benefit for both retention and transfer compared to participants who practiced blocked sequences. Those who trained with blocked sequences were left unprepared for interleaved sequences at test, while those who trained with interleaved sequences were unaffected by testing condition, revealing that learning resulting from blocked practice may be less flexible and more vulnerable to testing conditions. These results indicate that the benefit of interleaved practice extends to implicit motor sequence learning and transfer. 
    more » « less
  2. Abstract Riding a bicycle is considered a durable skill that cannot be forgotten. Here, novice participants practiced riding a reversed bicycle, in which a reversing gear inverted the handlebar’s rotation. Although learning to ride the reversed bicycle was possible, it was slow, highly variable, implicit, and followed an S-shape pattern. In the initial learning phase, failed attempts to ride the normal bicycle indicated strong interference between the two bicycle skills. While additional practice decreased this interference effect, a subset of learners could not ride either bicycle after eight sessions of practice. Experienced riders who performed extensive practice could switch bicycles without failed attempts and exhibited similar performance (i.e., similar handlebar oscillations) on both bicycles. However, their performance on the normal bicycle was worse than that of the novice bicycle riders at baseline. In conclusion, “unlearning” of the normal bicycle skill precedes the initial learning of the reversed bicycle skill, and a signature of such unlearning is still present following extensive practice. 
    more » « less
  3. null (Ed.)
    The human ability to use different tools demonstrates our capability of forming and maintaining multiple, context-specific motor memories. Experimentally, this has been investigated in dual adaptation, where participants adjust their reaching movements to opposing visuomotor transformations. Adaptation in these paradigms occurs by distinct processes, such as strategies for each transformation or the implicit acquisition of distinct visuomotor mappings. Although distinct, transformation-dependent aftereffects have been interpreted as support for the latter, they could reflect adaptation of a single visuomotor map, which is locally adjusted in different regions of the workspace. Indeed, recent studies suggest that explicit aiming strategies direct where in the workspace implicit adaptation occurs, thus potentially serving as a cue to enable dual adaptation. Disentangling these possibilities is critical to understanding how humans acquire and maintain motor memories for different skills and tools. We therefore investigated generalization of explicit and implicit adaptation to untrained movement directions after participants practiced two opposing cursor rotations, which were associated with the visual display being presented in the left or right half of the screen. Whereas participants learned to compensate for opposing rotations by explicit strategies specific to this visual workspace cue, aftereffects were not cue sensitive. Instead, aftereffects displayed bimodal generalization patterns that appeared to reflect locally limited learning of both transformations. By varying target arrangements and instructions, we show that these patterns are consistent with implicit adaptation that generalizes locally around movement plans associated with opposing visuomotor transformations. Our findings show that strategies can shape implicit adaptation in a complex manner. NEW & NOTEWORTHY Visuomotor dual adaptation experiments have identified contextual cues that enable learning of separate visuomotor mappings, but the underlying representations of learning are unclear. We report that visual workspace separation as a contextual cue enables the compensation of opposing cursor rotations by a combination of explicit and implicit processes: Learners developed context-dependent explicit aiming strategies, whereas an implicit visuomotor map represented dual adaptation independent from arbitrary context cues by local adaptation around the explicit movement plan. 
    more » « less
  4. Summary Across three experiments featuring naturalistic concepts (psychology concepts) and naïve learners, we extend previous research showing an effect of the sequence of study on learning outcomes, by demonstrating that the sequence of examples during study changes the representation the learner creates of the study materials. We compared participants' performance in test tasks requiring different representations and evaluated which sequence yields better learning in which type of tests. We found that interleaved study, in which examples from different concepts are mixed, leads to the creation of relatively interrelated concepts that are represented by contrast to each other and based on discriminating properties. Conversely, blocked study, in which several examples of the same concept are presented together, leads to the creation of relatively isolated concepts that are represented in terms of their central and characteristic properties. These results argue for the integrated investigation of the benefits of different sequences of study as depending on the characteristics of the study and testing situation. 
    more » « less
  5. Abstract Previous research has demonstrated significant inter-individual variability in the recruitment of the fast-explicit and slow-implicit processes during motor adaptation. In addition, we previously identified qualitative individual differences in adaptation linked to the formation and updating of new memory processes. Here, we investigated quantitative and qualitative differences in visuomotor adaptation with a design incorporating repeated learning and forgetting blocks, allowing for precise estimation of individual learning and forgetting rates in fast-slow adaptation models. Participants engaged in a two-day online visuomotor adaptation task. They first adapted to a 30-degree perturbation to eight targets in three blocks separated by short blocks of no feedback trials. Approximately 24 hours later, they performed a no-feedback retention block and a relearning block. We clustered the participants into strong and weak learners based on adaptation levels at the end of day one and fitted a fast-slow system to the adaptation data. Strong learners exhibited a strong negative correlation between the estimated slow and fast processes, which predicted 24-hour retention and savings, respectively, supporting the engagement of a fast-slow system. The pronounced individual differences in the recruitment of the two processes were attributed to wide ranges of estimated learning rates. Conversely, weak learners exhibited a positive correlation between the two estimated processes, as well as retention but no savings, supporting the engagement of a single slow system. Finally, both during baseline and adaptation, reaction times were shorter for weak learners. Our findings thus revealed two distinct ways to learn in visuomotor adaptation and highlight the necessity of considering both quantitative and qualitative individual differences in studies of motor learning. 
    more » « less