skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interleaved practice benefits implicit sequence learning and transfer
Abstract Compared to blocked practice, interleaved practice of different tasks leads to superior long-term retention despite poorer initial acquisition performance. This phenomenon, the contextual interference effect, is well documented in various domains but it is not yet clear if it persists in the absence of explicit knowledge in terms of fine motor sequence learning. Additionally, while there is some evidence that interleaved practice leads to improved transfer of learning to similar actions, transfer of implicit motor sequence learning has not been explored. The present studies used a serial reaction time task where participants practiced three different eight-item sequences that were either interleaved or blocked on Day 1 (training) and Day 2 (testing). In Experiment 1, the retention of the three training sequences was tested on Day 2 and in Experiment 2, three novel sequences were performed on Day 2 to measure transfer. We assessed whether subjects were aware of the sequences to determine whether the benefit of interleaved practice extends to implicitly learned sequences. Even for participants who reported no awareness of the sequences, interleaving led to a benefit for both retention and transfer compared to participants who practiced blocked sequences. Those who trained with blocked sequences were left unprepared for interleaved sequences at test, while those who trained with interleaved sequences were unaffected by testing condition, revealing that learning resulting from blocked practice may be less flexible and more vulnerable to testing conditions. These results indicate that the benefit of interleaved practice extends to implicit motor sequence learning and transfer.  more » « less
Award ID(s):
1634157
PAR ID:
10250915
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Memory & Cognition
ISSN:
0090-502X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To efficiently learn and retain motor skills, we can introduce contextual interference through interleaved practice. Interleaving tasks or stimuli initially hinders performance but leads to superior long-term retention. It is not yet clear if implicitly learned information also benefits from interleaving and how interleaved practice changes the representation of skills. The present study used a serial reaction time task where participants practiced three 8-item sequences that were either interleaved or blocked on Day 1 (training) and Day 2 (testing). An explicit recall test allowed us to post-hoc sort participants into two groups of learners: implicit learners recalled less items than did explicit learners. Significant decreasing monotonic trends, indicating successful learning, were observed in both training groups and both groups of learners. We found support for the benefit of interleaved practice on retention of implicit sequence learning, indicating that the benefit of interleaved practice does not depend on explicit memory retrieval. A Bayesian Sequential Learning model was adopted to model human performance. Both empirical and computational results suggest that explicit knowledge of the sequence was detrimental to retention when the sequences were blocked, but not when they were interleaved, suggesting that contextual interference may be a protective factor of interference of explicit knowledge. Slower learning in the interleaved condition may result in better retention and reduced interference of explicit knowledge on performance. 
    more » « less
  2. Abstract Practicing complex locomotor skills, such as those involving a step sequence engages distinct perceptual and motor mechanisms that support the recall of learning under new conditions (i.e., skill transfer). While sleep has been shown to enhance learning of sequences of fine movements (i.e., sleep-dependent consolidation), here we examined whether this benefit extends to learning of a locomotor pattern. Specifically, we tested the perceptual and motor learning of a locomotor sequence following sleep compared to wake. We hypothesized that post-practice sleep would increase locomotor sequence learning in the perceptual, but not in the motor domain. In this study, healthy young adult participants (n = 48; 18–33 years) practiced a step length sequence on a treadmill cued by visual stimuli displayed on a screen during training. Participants were then tested in a perceptual condition (backward walking with the same visual stimuli), or a motor condition (forward walking but with an inverted screen). Skill was assessed immediately, and again after a 12-h delay following overnight sleep or daytime wake (n = 12 for each interval/condition). Off-line learning improved following sleep compared to wake, but only for the perceptual condition. Our results suggest that perceptual and motor sequence learning are processed separately after locomotor training, and further points to a benefit of sleep that is rooted in the perceptual as opposed to the motor aspects of motor learning. 
    more » « less
  3. Summary Across three experiments featuring naturalistic concepts (psychology concepts) and naïve learners, we extend previous research showing an effect of the sequence of study on learning outcomes, by demonstrating that the sequence of examples during study changes the representation the learner creates of the study materials. We compared participants' performance in test tasks requiring different representations and evaluated which sequence yields better learning in which type of tests. We found that interleaved study, in which examples from different concepts are mixed, leads to the creation of relatively interrelated concepts that are represented by contrast to each other and based on discriminating properties. Conversely, blocked study, in which several examples of the same concept are presented together, leads to the creation of relatively isolated concepts that are represented in terms of their central and characteristic properties. These results argue for the integrated investigation of the benefits of different sequences of study as depending on the characteristics of the study and testing situation. 
    more » « less
  4. Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy tradeoff. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological level. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular 2D track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced choice task. In a subset of 15 participants, we measured short latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function (F 4,108 = 32.15, p < 0.001) and was associated with improved proprioceptive sensitivity at retention (t 22 = 24.75, p = 0.0031). Further, SAI increased after training (F 1,14 = 5.41, p = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc) are specifically linked to somatosensory function. 
    more » « less
  5. Abstract Previous research has demonstrated significant inter-individual variability in the recruitment of the fast-explicit and slow-implicit processes during motor adaptation. In addition, we previously identified qualitative individual differences in adaptation linked to the formation and updating of new memory processes. Here, we investigated quantitative and qualitative differences in visuomotor adaptation with a design incorporating repeated learning and forgetting blocks, allowing for precise estimation of individual learning and forgetting rates in fast-slow adaptation models. Participants engaged in a two-day online visuomotor adaptation task. They first adapted to a 30-degree perturbation to eight targets in three blocks separated by short blocks of no feedback trials. Approximately 24 hours later, they performed a no-feedback retention block and a relearning block. We clustered the participants into strong and weak learners based on adaptation levels at the end of day one and fitted a fast-slow system to the adaptation data. Strong learners exhibited a strong negative correlation between the estimated slow and fast processes, which predicted 24-hour retention and savings, respectively, supporting the engagement of a fast-slow system. The pronounced individual differences in the recruitment of the two processes were attributed to wide ranges of estimated learning rates. Conversely, weak learners exhibited a positive correlation between the two estimated processes, as well as retention but no savings, supporting the engagement of a single slow system. Finally, both during baseline and adaptation, reaction times were shorter for weak learners. Our findings thus revealed two distinct ways to learn in visuomotor adaptation and highlight the necessity of considering both quantitative and qualitative individual differences in studies of motor learning. 
    more » « less