skip to main content


Title: Systematic morphological andmorphometricanalysisofidentified olfactory receptor neurons in Drosophila melanogaster
The biophysical properties of sensory neurons are influenced by their morphometric and morphological features, whose precise measurements require high-quality volume electron microscopy (EM). However, systematic surveys of these nanoscale characteristics for identified neurons are scarce. Here, we characterize the morphology of Drosophila olfactory receptor neurons (ORNs) across the majority of genetically identified sensory hairs.By analyzing serial block-face electron microscopy (SBEM) images of cryo fixed antennal tissues, we compile an extensive morphometric dataset based on 122reconstructed 3D models of 33 identifiedORN types.In addition, we observe multiple novel features—including extracellular vacuoles within sensillum lumen, intricate dendritic branching,mitochondria enrichment in select ORNs, novel sensillum types, and empty sensilla containing no neurons—which raise new questions pertinent to cell biology and sensory neurobiology.Our systematic survey is critical for future investigations into how the size and shape of sensory neurons influence their responses, sensitivity and circuit function.  more » « less
Award ID(s):
2014862
NSF-PAR ID:
10250916
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION A brainwide, synaptic-resolution connectivity map—a connectome—is essential for understanding how the brain generates behavior. However because of technological constraints imaging entire brains with electron microscopy (EM) and reconstructing circuits from such datasets has been challenging. To date, complete connectomes have been mapped for only three organisms, each with several hundred brain neurons: the nematode C. elegans , the larva of the sea squirt Ciona intestinalis , and of the marine annelid Platynereis dumerilii . Synapse-resolution circuit diagrams of larger brains, such as insects, fish, and mammals, have been approached by considering select subregions in isolation. However, neural computations span spatially dispersed but interconnected brain regions, and understanding any one computation requires the complete brain connectome with all its inputs and outputs. RATIONALE We therefore generated a connectome of an entire brain of a small insect, the larva of the fruit fly, Drosophila melanogaster. This animal displays a rich behavioral repertoire, including learning, value computation, and action selection, and shares homologous brain structures with adult Drosophila and larger insects. Powerful genetic tools are available for selective manipulation or recording of individual neuron types. In this tractable model system, hypotheses about the functional roles of specific neurons and circuit motifs revealed by the connectome can therefore be readily tested. RESULTS The complete synaptic-resolution connectome of the Drosophila larval brain comprises 3016 neurons and 548,000 synapses. We performed a detailed analysis of the brain circuit architecture, including connection and neuron types, network hubs, and circuit motifs. Most of the brain’s in-out hubs (73%) were postsynaptic to the learning center or presynaptic to the dopaminergic neurons that drive learning. We used graph spectral embedding to hierarchically cluster neurons based on synaptic connectivity into 93 neuron types, which were internally consistent based on other features, such as morphology and function. We developed an algorithm to track brainwide signal propagation across polysynaptic pathways and analyzed feedforward (from sensory to output) and feedback pathways, multisensory integration, and cross-hemisphere interactions. We found extensive multisensory integration throughout the brain and multiple interconnected pathways of varying depths from sensory neurons to output neurons forming a distributed processing network. The brain had a highly recurrent architecture, with 41% of neurons receiving long-range recurrent input. However, recurrence was not evenly distributed and was especially high in areas implicated in learning and action selection. Dopaminergic neurons that drive learning are amongst the most recurrent neurons in the brain. Many contralateral neurons, which projected across brain hemispheres, were in-out hubs and synapsed onto each other, facilitating extensive interhemispheric communication. We also analyzed interactions between the brain and nerve cord. We found that descending neurons targeted a small fraction of premotor elements that could play important roles in switching between locomotor states. A subset of descending neurons targeted low-order post-sensory interneurons likely modulating sensory processing. CONCLUSION The complete brain connectome of the Drosophila larva will be a lasting reference study, providing a basis for a multitude of theoretical and experimental studies of brain function. The approach and computational tools generated in this study will facilitate the analysis of future connectomes. Although the details of brain organization differ across the animal kingdom, many circuit architectures are conserved. As more brain connectomes of other organisms are mapped in the future, comparisons between them will reveal both common and therefore potentially optimal circuit architectures, as well as the idiosyncratic ones that underlie behavioral differences between organisms. Some of the architectural features observed in the Drosophila larval brain, including multilayer shortcuts and prominent nested recurrent loops, are found in state-of-the-art artificial neural networks, where they can compensate for a lack of network depth and support arbitrary, task-dependent computations. Such features could therefore increase the brain’s computational capacity, overcoming physiological constraints on the number of neurons. Future analysis of similarities and differences between brains and artificial neural networks may help in understanding brain computational principles and perhaps inspire new machine learning architectures. The connectome of the Drosophila larval brain. The morphologies of all brain neurons, reconstructed from a synapse-resolution EM volume, and the synaptic connectivity matrix of an entire brain. This connectivity information was used to hierarchically cluster all brains into 93 cell types, which were internally consistent based on morphology and known function. 
    more » « less
  2. The structure of neural circuitry plays a crucial role in brain function. Previous studies of brain organization generally had to trade off between coarse descriptions at a large scale and fine descriptions on a small scale. Researchers have now reconstructed tens to hundreds of thousands of neurons at synaptic resolution, enabling investigations into the interplay between global, modular organization, and cell type-specific wiring. Analyzing data of this scale, however, presents unique challenges. To address this problem, we applied novel community detection methods to analyze the synapse-level reconstruction of an adult femaleDrosophila melanogasterbrain containing >20,000 neurons and 10 million synapses. Using a machine-learning algorithm, we find the most densely connected communities of neurons by maximizing a generalized modularity density measure. We resolve the community structure at a range of scales, from large (on the order of thousands of neurons) to small (on the order of tens of neurons). We find that the network is organized hierarchically, and larger-scale communities are composed of smaller-scale structures. Our methods identify well-known features of the fly brain, including its sensory pathways. Moreover, focusing on specific brain regions, we are able to identify subnetworks with distinct connectivity types. For example, manual efforts have identified layered structures in the fan-shaped body. Our methods not only automatically recover this layered structure, but also resolve finer connectivity patterns to downstream and upstream areas. We also find a novel modular organization of the superior neuropil, with distinct clusters of upstream and downstream brain regions dividing the neuropil into several pathways. These methods show that the fine-scale, local network reconstruction made possible by modern experimental methods are sufficiently detailed to identify the organization of the brain across scales, and enable novel predictions about the structure and function of its parts.

    Significance StatementThe Hemibrain is a partial connectome of an adult femaleDrosophila melanogasterbrain containing >20,000 neurons and 10 million synapses. Analyzing the structure of a network of this size requires novel and efficient computational tools. We applied a new community detection method to automatically uncover the modular structure in the Hemibrain dataset by maximizing a generalized modularity measure. This allowed us to resolve the community structure of the fly hemibrain at a range of spatial scales revealing a hierarchical organization of the network, where larger-scale modules are composed of smaller-scale structures. The method also allowed us to identify subnetworks with distinct cell and connectivity structures, such as the layered structures in the fan-shaped body, and the modular organization of the superior neuropil. Thus, network analysis methods can be adopted to the connectomes being reconstructed using modern experimental methods to reveal the organization of the brain across scales. This supports the view that such connectomes will allow us to uncover the organizational structure of the brain, which can ultimately lead to a better understanding of its function.

     
    more » « less
  3. Abstract

    Firefly flashes are well-known visual signals used by these insects to find, identify, and choose mates. However, many firefly species have lost the ability to produce light as adults. These “unlighted” species generally lack developed adult light organs, are diurnal rather than nocturnal, and are believed to use volatile pheromones acting over a distance to locate mates. While cuticular hydrocarbons, which may function in mate recognition at close range, have been examined for a handful of the over 2000 extant firefly species, no volatile pheromone has ever been identified. In this study, using coupled gas chromatography - electroantennographic detection, we detected a single female-emitted compound that elicited antennal responses from wild-caught male winter fireflies,Photinus corruscus. The compound was identified as (1S)-exo-3-hydroxycamphor (hydroxycamphor). In field trials at two sites across the species’ eastern North American range, large numbers of maleP. corruscuswere attracted to synthesized hydroxycamphor, verifying its function as a volatile sex attractant pheromone. Males spent more time in contact with lures treated with synthesized hydroxycamphor than those treated with solvent only in laboratory two-choice assays. Further, using single sensillum recordings, we characterized a pheromone-sensitive odorant receptor neuron in a specific olfactory sensillum on maleP. corruscusantennae and demonstrated its sensitivity to hydroxycamphor. Thus, this study has identified the first volatile pheromone and its corresponding sensory neuron for any firefly species,and provides a tool for monitoringP. corruscuspopulations for conservation and further inquiry into the chemical and cellular bases for sexual communication among fireflies.

     
    more » « less
  4. The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.

     
    more » « less
  5. Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy “connectomics” in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning. 
    more » « less