skip to main content


Title: Constraining Hadron-quark Phase Transition Parameters within the Quark-mean-field Model Using Multimessenger Observations of Neutron Stars
Award ID(s):
2020275 1630782
NSF-PAR ID:
10250918
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
904
Issue:
2
ISSN:
1538-4357
Page Range / eLocation ID:
103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A nuclear physics example of statistical bootstrap is used on the MARATHON nucleon structure function ratio data in the quark momentum fraction regions xB → 0 and xB → 1. The extrapolated F2 ratio as quark momentum fraction xB → 1 is Fn 2 F p 2 → 0.4 ± 0.05 and this value is compared to theoretical predictions. The extrapolated ratio when xB → 0 favors the simple model of isospin symmetry with the complete dominance of sea quarks at low momentum fraction. At high-xB, the proton quark distribution function ratio d/u is derived from the F2 ratio and found to be d/u → 1/6. Our extrapolated values for both the Fn 2 F p 2 ratio and the d/u parton distribution function ratio are within uncertainties of perturbative QCD values from quark counting, helicity conservation arguments, and a Dyson-Schwinger equation with a contact interaction model. In addition, it is possible to match the statistical bootstrap value to theoretical predictions by allowing two compatible models to act simultaneously in the nucleon wave function. One such example is nucleon wave functions composed of a linear combination of a quark-diquark state and a three-valence quark correlated state with coefficients that combine to give the extrapolated F2 ratio at xB = 1. 
    more » « less
  2. null (Ed.)
    Abstract Heavy quark production provides a unique probe of the quark-gluon plasma transport properties in heavy ion collisions. Experimental observables like the nuclear modification factor $$R_\mathrm{AA}$$ R AA and elliptic anisotropy $$v_\mathrm{2}$$ v 2 of heavy flavor mesons are sensitive to the heavy quark diffusion coefficient. There now exist an extensive set of such measurements, which allow a data-driven extraction of this coefficient. In this work, we make such an attempt within our recently developed heavy quark transport modeling framework (Langevin-transport with Gluon Radiation, LGR). A question of particular interest is the temperature dependence of the diffusion coefficient, for which we test a wide range of possibility and draw constraints by comparing relevant charm meson data with model results. We find that a relatively strong increase of diffusion coefficient from crossover temperature $$T_c$$ T c toward high temperature is preferred by data. We also make predictions for Bottom meson observables for further experimental tests. 
    more » « less