skip to main content


Title: Probing the fission properties of neutron-rich actinides with the astrophysical r process
We review recent work examining the influence of fission in rapid neutron capture ( r -process) nucleosynthesis which can take place in astrophysical environments. We briefly discuss the impact of uncertain fission barriers and fission rates on the population of heavy actinide species. We demonstrate the influence of the fission fragment distributions for neutron-rich nuclei and discuss currently available treatments, including recent macroscopic-microscopic calculations. We conclude by comparing our nucleosynthesis results directly with stellar data for metal-poor stars rich in r -process elements to consider whether fission plays a role in the so-called ‘universality’ of r -process abundances observed from star to star.  more » « less
Award ID(s):
2020275 1630782
NSF-PAR ID:
10251058
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Kawano, T.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
242
ISSN:
2100-014X
Page Range / eLocation ID:
04002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding of fission properties of super-heavy nuclei (SHN) is essential not only for the synthesis of new elements but also for astrophysical nucleosynthesis because fission fragments from SHN are recycled as the seed nuclei of the r-process. A recent discovery of the r-process site by the gravitational wave observations requires more precise nuclear information for the detailed simulation of the r-process nucleosynthesis. However, the fission mechanisms of the SHN are not understood well, and therefore theoretical predictions of distributions of the fission fragments of SHN are very model-dependent. Our four-dimensional Langevin model can calculate various properties of the fission fragments, such as the distribution of fission yields, kinetic energies, and deformation of fission fragments and their correlations just after scission. Those results are consistent with the experimental data, especially in the actinide region without adjusting parameters. Based on such a reliable model, we previously investigated the fission of representative SHN where the experimental data exist and found that doubly-magic shell closure of 132 Sn and 208 Pb dominates the fission process. This paper demonstrates the results of our calculations for the systematics of fission yield and the total kinetic energies from the neutron-rich to the neutron-deficient side of SHN. We also show decomposition of fission modes, such as standard/super-long/super-short modes, based on a Brosa-like concept. 
    more » « less
  2. Abstract

    Despite recent progress, the astrophysical channels responsible for rapid neutron capture (r-process) nucleosynthesis remain an unsettled question. Observations of the kilonova following the gravitational-wave-detected neutron star merger GW170817 established mergers as one site of ther-process, but additional sources may be needed to fully explainr-process enrichment in the universe. One intriguing possibility is that rapidly rotating massive stars undergoing core collapse launchr-process-rich outflows off the accretion disks formed from their infalling matter. In this scenario,r-process winds are one component of the supernova (SN) ejecta produced by “collapsar” explosions. We present the first systematic study of the effects ofr-process enrichment on the emission from collapsar-generated SNe. We semianalytically modelr-process SN emission from explosion out to late times and determine its distinguishing features. The ease with whichr-process SNe can be identified depends on how effectively wind material mixes into the initiallyr-process-free outer layers of the ejecta. In many cases, enrichment produces a near-infrared (NIR) excess that can be detected within ∼75 days of explosion. We also discuss optimal targets and observing strategies for testing ther-process collapsar theory, and find that frequent monitoring of optical and NIR emission from high-velocity SNe in the first few months after explosion offers a reasonable chance of success while respecting finite observing resources. Such early identification ofr-process collapsar candidates also lays the foundation for nebular-phase spectroscopic follow-up in the NIR and mid-infrared, for example, with the James Webb Space Telescope.

     
    more » « less
  3. ABSTRACT

    Neutron star merger accretion discs can launch neutron-rich winds of >10−2M⊙. This ejecta is a prime site for r-process nucleosynthesis, which will produce a range of radioactive heavy nuclei. The decay of these nuclei releases enough energy to accelerate portions of the wind by ∼0.1c. Here, we investigate the effect of r-process heating on the dynamical evolution of disc winds. We extract the wind from a 3D general relativistic magnetohydrodynamic simulation of a disc from a post-merger system. This is used to create inner boundary conditions for 2D hydrodynamic simulations that continue the original 3D simulation. We perform two such simulations: one that includes the r-process heating, and another one that does not. We follow the hydrodynamic simulations until the winds reach homology (60 s). Using time-dependent multifrequency multidimensional Monte Carlo radiation transport simulations, we then calculate the kilonova light curves from the winds with and without dynamical r-process heating. We find that the r-process heating can substantially alter the velocity distribution of the wind, shifting the mass-weighted median velocity from 0.06c to 0.12c. The inclusion of the dynamical r-process heating makes the light curve brighter and bluer at $\sim 1\, \mathrm{d}$ post-merger. However, the high-velocity tail of the ejecta distribution and the early ($\lesssim 1\, \mathrm{d}$) light curves are largely unaffected.

     
    more » « less
  4. null (Ed.)
    The composition of the early Solar System can be inferred from meteorites. Many elements heavier than iron were formed by the rapid neutron capture process (r-process), but the astrophysical sources where this occurred remain poorly understood. We demonstrate that the near-identical half-lives ( ≃ 15.6  million years ) of the radioactive r-process nuclei iodine-129 and curium-247 preserve their ratio, irrespective of the time between production and incorporation into the Solar System. We constrain the last r-process source by comparing the measured meteoritic ratio 129 I/ 247 Cm = 438 ± 184 with nucleosynthesis calculations based on neutron star merger and magneto-rotational supernova simulations. Moderately neutron-rich conditions, often found in merger disk ejecta simulations, are most consistent with the meteoritic value. Uncertain nuclear physics data limit our confidence in this conclusion. 
    more » « less
  5. null (Ed.)
    ABSTRACT The abundances of neutron (n)-capture elements in the carbon-enhanced metal-poor (CEMP)-r/s stars agree with predictions of intermediate n-density nucleosynthesis, at Nn ∼ 1013–1015 cm−3, in rapidly accreting white dwarfs (RAWDs). We have performed Monte Carlo simulations of this intermediate-process (i-process) nucleosynthesis to determine the impact of (n,γ) reaction rate uncertainties of 164 unstable isotopes, from 131I to 189Hf, on the predicted abundances of 18 elements from Ba to W. The impact study is based on two representative one-zone models with constant values of Nn = 3.16 × 1014 and 3.16 × 1013 cm−3 and on a multizone model based on a realistic stellar evolution simulation of He-shell convection entraining H in a RAWD model with [Fe/H] = −2.6. For each of the selected elements, we have identified up to two (n,γ) reactions having the strongest correlations between their rate variations constrained by Hauser–Feshbach computations and the predicted abundances, with the Pearson product–moment correlation coefficients |rP| > 0.15. We find that the discrepancies between the predicted and observed abundances of Ba and Pr in the CEMP-i star CS 31062−050 are significantly diminished if the rate of 137Cs(n,γ)138Cs is reduced and the rates of 141Ba(n,γ)142Ba or 141La(n,γ)142La increased. The uncertainties of temperature-dependent β-decay rates of the same unstable isotopes have a negligible effect on the predicted abundances. One-zone Monte Carlo simulations can be used instead of computationally time-consuming multizone Monte Carlo simulations in reaction rate uncertainty studies if they use comparable values of Nn. We discuss the key challenges that RAWD simulations of i process for CEMP-i stars meet by contrasting them with recently published low-Z asymptotic giant branch (AGB) i process. 
    more » « less