skip to main content


Title: Nuclear fission properties of super heavy nuclei described within the four-dimensional Langevin model
Understanding of fission properties of super-heavy nuclei (SHN) is essential not only for the synthesis of new elements but also for astrophysical nucleosynthesis because fission fragments from SHN are recycled as the seed nuclei of the r-process. A recent discovery of the r-process site by the gravitational wave observations requires more precise nuclear information for the detailed simulation of the r-process nucleosynthesis. However, the fission mechanisms of the SHN are not understood well, and therefore theoretical predictions of distributions of the fission fragments of SHN are very model-dependent. Our four-dimensional Langevin model can calculate various properties of the fission fragments, such as the distribution of fission yields, kinetic energies, and deformation of fission fragments and their correlations just after scission. Those results are consistent with the experimental data, especially in the actinide region without adjusting parameters. Based on such a reliable model, we previously investigated the fission of representative SHN where the experimental data exist and found that doubly-magic shell closure of 132 Sn and 208 Pb dominates the fission process. This paper demonstrates the results of our calculations for the systematics of fission yield and the total kinetic energies from the neutron-rich to the neutron-deficient side of SHN. We also show decomposition of fission modes, such as standard/super-long/super-short modes, based on a Brosa-like concept.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10464901
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physics
Volume:
11
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Neutron capture reactions are responsible for the synthesis of almost all of the elements heavier than iron through the slow s-process, that proceeds close to the line of stability, and the rapid r-process, with very neutron-rich waiting points. Uncertainties in (n,γ) rates in neutron rich nuclei, especially near closed neu- tron shells, can have significant impact [1] on the predictions of final abundances for different astrophysical scenarios for the r process. Understanding (n,γ) rates on neutron-rich fission fragments is also important for nuclear forensics and stockpile stewardship science. Ratkiewicz et al. [2 and references therein] has recently demonstrated that the (d,pγ) reaction is a valid surrogate for (n,γ), where the formation of the compound nu- cleus from the breakup of the deuteron has been calculated in a reaction model and the subsequent measured gamma-decay probabilities are reproduced with standard level density and strength functions in a Bayesian approach. In parallel to the surrogate validation efforts, we have demonstrated that the (d,pγ) reaction can be measured in inverse kinematics with Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS) [3] where the Gammasphere array of Compton-suppressed HPGe detectors is coupled to the Oak Ridge Rutgers University Barrel Array of position-sensitive silicon strip detectors. During the commis- sioning campaign we measured the (d,pγ) reaction with 134Xe and 95Mo beams, the latter to demonstrate the surrogate method in inverse kinematics. The present talk will present preliminary results from this campaign including γ-decay probabilities and prospects for surrogate (n,γ) measurements with 143Ba fission-fragment beams. 
    more » « less
  2. Kawano, T. (Ed.)
    We review recent work examining the influence of fission in rapid neutron capture ( r -process) nucleosynthesis which can take place in astrophysical environments. We briefly discuss the impact of uncertain fission barriers and fission rates on the population of heavy actinide species. We demonstrate the influence of the fission fragment distributions for neutron-rich nuclei and discuss currently available treatments, including recent macroscopic-microscopic calculations. We conclude by comparing our nucleosynthesis results directly with stellar data for metal-poor stars rich in r -process elements to consider whether fission plays a role in the so-called ‘universality’ of r -process abundances observed from star to star. 
    more » « less
  3. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less
  4. ABSTRACT

    Theoretically predicted yields of elements created by the rapid neutron capture (r-)process carry potentially large uncertainties associated with incomplete knowledge of nuclear properties and approximative hydrodynamical modelling of the matter ejection processes. We present an in-depth study of the nuclear uncertainties by varying theoretical nuclear input models that describe the experimentally unknown neutron-rich nuclei. This includes two frameworks for calculating the radiative neutron capture rates and 14 different models for nuclear masses, β-decay rates, and fission properties. Our r-process nuclear network calculations are based on detailed hydrodynamical simulations of dynamically ejected material from NS–NS or NS–BH binary mergers plus the secular ejecta from BH–torus systems. The impact of nuclear uncertainties on the r-process abundance distribution and the early radioactive heating rate is found to be modest (within a factor of ∼20 for individual A > 90 abundances and a factor of 2 for the heating rate). However, the impact on the late-time heating rate is more significant and depends strongly on the contribution from fission. We witness significantly higher sensitivity to the nuclear physics input if only a single trajectory is used compared to considering ensembles with a much larger number of trajectories (ranging between 150 and 300), and the quantitative effects of the nuclear uncertainties strongly depend on the adopted conditions for the individual trajectory. We use the predicted Th/U ratio to estimate the cosmochronometric age of six metal-poor stars and find the impact of the nuclear uncertainties to be up to 2 Gyr.

     
    more » « less
  5. ABSTRACT

    We perform a comparative analysis of nucleosynthesis yields from binary neutron star (BNS) mergers, black hole-neutron star (BHNS) mergers, and core-collapse supernovae (CCSNe) with the goal of determining which are the most dominant sources of r-process enrichment observed in stars. We find that BNS and BHNS binaries may eject similar mass distributions of robust r-process nuclei post-merger (up to third peak and actinides, A ∼ 200−240), after accounting for the volumetric event rates. Magnetorotational (MR) CCSNe likely undergo a weak r-process (up to A ∼ 140) and contribute to the production of light element primary process (LEPP) nuclei, whereas typical thermal, neutrino-driven CCSNe only synthesize up to first r-process peak nuclei (A ∼ 80−90). We also find that the upper limit to the rate of MR CCSNe is $\lesssim 1~{{\ \rm per\ cent}}$ the rate of typical thermal CCSNe; if the rate was higher, then weak r-process nuclei would be overproduced. Although the largest uncertainty is from the volumetric event rate, the prospects are encouraging for confirming these rates in the next few years with upcoming surveys. Using a simple model to estimate the resulting kilonova light curve from mergers and our set of fiducial merger parameters, we predict that ∼7 BNS and ∼2 BHNS events will be detectable per year by the Vera C. Rubin Observatory (LSST), with prior gravitational wave (GW) triggers.

     
    more » « less