skip to main content

Title: Exploring impacts of marine heatwaves: paternal heat exposure diminishes fertilization success in the purple sea urchin (Strongylocentrotus purpuratus)
Abstract

Marine heatwaves (MHWs) are projected to increase in intensity and frequency over the coming decades, and it is imperative to assess the adaptive capacity of marine organisms to these extreme temperature events. Given the nature of MHWs to last days to weeks in a region, these events may have overarching impacts on phenological events like reproduction and development. Here, the role of adult thermal history and transgenerational plasticity may be an important pathway by which MHWs are transduced to impact community structure. In this study, we sought to explore the effects of paternal thermal history in the purple urchin,Strongylocentrotus purpuratus, on a crucial aspect of reproduction, fertilization. Using ecologically relevant temperatures representative of both MHW events that occurred in 2014–2020 and non-MHW temperatures in our region of the California Large Marine Ecosystem, we conditioned maleS. purpuratusfor 28 days to either a high, MHW or a low, non-MHW temperature. Following the temperature acclimation of adults, sperm performance was tested for individual males by conducting fertilization success trials at varying temperatures and sperm concentrations. While sperm appeared robust to elevated temperature during fertilization, sperm produced by high-temperature-acclimated males had overall diminished performance as compared to those acclimated to non-MHW temperatures. These results more » suggest MHW events will have a negative impact on fertilization in situ forS. purpuratuspopulations. Furthermore, these results highlight the importance of considering both male and female environmental history in projections of reproduction under climate change scenarios.

« less
Authors:
; ;
Award ID(s):
1656262
Publication Date:
NSF-PAR ID:
10251123
Journal Name:
Marine Biology
Volume:
168
Issue:
7
ISSN:
0025-3162
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays amore »role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster.

    « less
  2. Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries. However, when seagrass meadows are disturbed, these C stocks may be remineralized, leading to significant CO 2 emissions. Increasing ocean temperatures, and increasing frequency and severity of heat waves, threaten seagrass meadows and their sediment blue C. To date, no study has directly measured the impact of seagrass declines from high temperatures on sediment C stocks. Here, we use a long-term record of sediment C stocks from a 7-km 2 , restored eelgrass ( Zostera marina ) meadowmore »to show that seagrass dieback following a single marine heat wave (MHW) led to significant losses of sediment C. Patterns of sediment C loss and re-accumulation lagged patterns of seagrass recovery. Sediment C losses were concentrated within the central area of the meadow, where sites experienced extreme shoot density declines of 90% during the MHW and net losses of 20% of sediment C over the following 3 years. However, this effect was not uniform; outer meadow sites showed little evidence of shoot declines during the MHW and had net increases of 60% of sediment C over the following 3 years. Overall, sites with higher seagrass recovery maintained 1.7x as much C compared to sites with lower recovery. Our study demonstrates that while seagrass blue C is vulnerable to MHWs, localization of seagrass loss can prevent meadow-wide C losses. Long-term (decadal and beyond) stability of seagrass blue C depends on seagrass resilience to short-term disturbance events.« less
  3. Abstract

    Manipulating mosquito reproduction is a promising approach to reducing mosquito populations and the burden of diseases they carry. A thorough understanding of reproductive processes is necessary to develop such strategies, but little is known about how sperm are processed and prepared for fertilization within female mosquitoes. By employing cryo-electron microscopy for the first time to study sperm of the mosquitoAedes aegypti, we reveal that sperm shed their entire outer coat, the glycocalyx, within 24 hours of being stored in the female. Motility assays demonstrate that as their glycocalyx is shed in the female’s sperm storage organs, sperm transition from amore »period of dormancy to rapid motility—a critical prerequisite for sperm to reach the egg. We also show that females gradually become fertile as sperm become motile, and that oviposition behavior increases sharply after females reach peak fertility. Together, these experiments demonstrate a striking coincidence of the timelines of several reproductive events inAe. aegypti, suggesting a direct relationship between sperm modification and female reproductive capacity.

    « less
  4. Marine ecosystems are vulnerable to climate driven events such as marine heatwaves yet we have a poor understanding of whether they will collapse or recover. Kelp forests are known to be susceptible, and there has been a rise in sea urchin barrens around the world. When temperatures increase so do physiological demands while food resources decline, tightening metabolic constraints. In this case study, we examine red abalone ( Haliotis rufescens ) looking at sublethal impacts and their prospects for recovery within kelp forests that have shifted to sea urchin barrens. Abalone are a recreationally fished species that once thrived inmore »northern California’s bull kelp forests but have recently suffered mass mortalities since the 2014–2016 marine heatwave. Quantitative data exist on the health and reproduction of abalone both prior to and after the collapse. The survivors of the mass mortality show a 2-year lag in body and gonad condition indices. After the lag, body and gonad indexes decreased substantially, as did the relationship between shell length and body weight. Production of mature eggs per female declined by 99% ( p < 0.001), and the number of eggs per gram of female body weight (2,984/g) declined to near zero (9/g). The number of males with sperm was reduced by 33%, and the sperm abundance score was reduced by 28% ( p = 0.414). We observed that these reductions were for mature eggs and sperm while immature eggs and spermatids were still present in large numbers. In the lab, after reintroduction of kelp, weight gains were quickly lost following a second starvation period. This example illustrates how climate-driven declines in foundation species can suppress recovery of the system by impacting body condition and future reproduction of surviving individuals. Given the poor reproductive potential of the remaining abalone in northern California, coupled with ongoing mortality and low kelp abundances, we discuss the need to maintain the fishing moratorium and implement active abalone restoration measures. For fished species, such as abalone, this additional hurdle to recovery imposed by changes in climate is critical to understand and incorporate into resource management and restoration.« less
  5. In theAllonemobius sociuscomplex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes.Our recently diverged species generally lacked sequence variation. As a result,ω-based tests were only mildly successful. Some of our genes showed evidence of elevatedωvalues on the internal branches of gene trees. In a couple genes these internal branches coincided with both species branching events of the species tree, betweenA. fasciatusand the other two species, and betweenA. sociusandA. sp. nov.Tex. In comparison, more successfulmore »approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses wasarginine kinase(AK) andapolipoprotein A-1 binding protein(APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.

    « less