skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maternal Dietary Protein Intake Influences Milk and Offspring Gut Microbial Diversity in a Rat (Rattus norvegicus) Model
Historically, investigators have assumed microorganisms identified in mother’s milk to be contaminants, but recent data suggest that milk microbiota may contribute to beneficial maternal effects. Microorganisms that colonize the gastrointestinal tracts of newborn mammals are derived, at least in part, from the maternal microbial population. Milk-derived microbiota is an important source of this microbial inocula and we hypothesized that the maternal diet contributes to variation in this microbial community. To evaluate the relationship between a mother’s diet and milk microbiome, we fed female rats a low- or high-protein diet and mated all individuals. Milk and cecal contents were collected from dams at peak lactation (14-day post-partum), and the bacterial composition of each community was assessed by 16S rRNA gene amplicon sequencing. Our findings revealed higher dietary protein intake decreased fecal microbial diversity but increased milk microbial and pup cecum diversity. Further, the higher dietary protein intake resulted in a greater abundance of potentially health-promoting bacteria, such as Lactobacillus spp. These data suggest that dietary protein levels contribute to significant shifts in the composition of maternal milk microbiota and that the functional consequences of these changes in microbial inocula might be biologically important and should be further explored.  more » « less
Award ID(s):
1736150 1453784
PAR ID:
10251157
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nutrients
Volume:
11
Issue:
9
ISSN:
2072-6643
Page Range / eLocation ID:
2257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bonneaud, Camille (Ed.)
    Abstract Macronutrients play a vital role in host immunity and can influence host–pathogen dynamics, potentially through dietary effects on gut microbiota. To increase our understanding of how dietary macronutrients affect physiology and gut microbiota and investigate whether feeding behaviour is influenced by an immune threat, we conducted two experiments. First, we determined whether zebra finches (Taeniopygia guttata) exhibit shifts in physiology and gut microbiota when fed diets differing in macronutrient ratios. We found the type and amount of diet consumed affected gut microbiota alpha diversity, where microbial richness and Shannon diversity increased with caloric intake in birds fed a high‐fat diet and decreased with caloric intake in birds fed a high protein diet. Diet macronutrient content did not affect physiological metrics, but lower caloric intake was associated with higher complement activity. In our second experiment, we simulated an infection in birds using the bacterial endotoxin lipopolysaccharide (LPS) and quantified feeding behaviour in immune challenged and control individuals, as well as birds housed near either a control pair (no immune threat), or birds housed near a pair given an immune challenge with LPS (social cue of heightened infection risk). We also examined whether social cues of infection alter physiological responses relevant to responding to an immune threat, an effect that could be mediated through shifts in feeding behaviour. LPS induced a reduction in caloric intake driven by a decrease in protein, but not fat consumption. No evidence was found for socially induced shifts in feeding behaviour, physiology or gut microbiota. Our findings carry implications for host health, as sickness‐induced anorexia and diet‐induced shifts in the microbiome could shape host–pathogen interactions. 
    more » « less
  2. ABSTRACT: Antibiotics in early life can promote adiposity via interactions with the gut microbiota. However, antibiotics represent only one possible route of antimicrobial exposure. Dietary preservatives exhibit antimicrobial activity, contain chemical structures accessible to microbial enzymes, and alter environmental conditions favoring specific microbial taxa. Therefore, preservatives that retain bioactivity in the gut might likewise alter the gut microbiota and host metabolism. Here we conduct in vitro, ex vivo, and in vivo experiments in mice to test the effects of preservatives on the gut microbiota and host physiology. We screened common dietary preservatives against a panel of human gut isolates and whole fecal communities, finding that preservatives strongly altered microbial growth and community structure. We exposed mice to diet-relevant doses of 4 preservatives [acetic acid, BHA (butylated hydroxyanisole), EDTA (ethylenediaminetetraacetic acid) and sodium sulfite], which each induced compound-specific changes in gut microbiota composition. Finally, we compared the long-term effects of early-life EDTA and low-dose antibiotic (ampicillin) exposure. EDTA exposure modestly reduced nutrient absorption and cecal acetate in both sexes, resulting in lower adiposity in females despite greater food intake. Females exposed to ampicillin also exhibited lower adiposity, along with larger brains and smaller livers. By contrast, in males, ampicillin exposure generally increased energy harvest and decreased energy expenditure, resulting in higher adiposity. Our results highlight the potential for everyday doses of common dietary preservatives to affect the gut microbiota and impact metabolism differently in males and females. Thus, despite their generally-regarded-as-safe designation, preservatives could have unintended consequences for consumer health. 
    more » « less
  3. Abstract Diet profoundly influences the composition of an animal’s microbiome, especially in holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome dynamics throughout metamorphosis. Here, we use monarch butterflies (Danaus plexippus), specialist herbivores that feed as larvae on many species of chemically well-defined milkweed plants (Asclepias sp.), to investigate the impacts of development and diet on the composition of the gut microbial community. While a few microbial taxa are conserved across life stages of monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point during the pupal stage and then recovering again in the adult stage. The microbial composition then undergoes a substantial shift upon the transition from pupa to adult, with female adults having significantly different microbial communities than the eggs that they lay, indicating limited evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall microbial composition, our results suggest that fourth instar larvae exhibit higher microbial diversity when consuming milkweed with high concentrations of toxic cardenolide phytochemicals. This study underscores how diet and developmental stage collectively shape the monarch’s gut microbiota. 
    more » « less
  4. The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease. 
    more » « less
  5. Diet selection is a fundamental aspect of animal behavior with numerous ecological and evolutionary implications. While the underlying mechanisms are complex, the availability of essential dietary nutrients can strongly influence diet selection behavior. The gut microbiome has been shown to metabolize many of these same nutrients, leading to the untested hypothesis that intestinal microbiota may influence diet selection. Here, we show that germ-free mice colonized by gut microbiota from three rodent species with distinct foraging strategies differentially selected diets that varied in macronutrient composition. Specifically, we found that herbivore-conventionalized mice voluntarily selected a higher protein:carbohydrate (P:C) ratio diet, while omnivore- and carnivore-conventionalized mice selected a lower P:C ratio diet. In support of the long-standing hypothesis that tryptophan—the essential amino acid precursor of serotonin—serves as a peripheral signal regulating diet selection, bacterial genes involved in tryptophan metabolism and plasma tryptophan availability prior to the selection trial were significantly correlated with subsequent voluntary carbohydrate intake. Finally, herbivore-conventionalized mice exhibited larger intestinal compartments associated with microbial fermentation, broadly reflecting the intestinal morphology of their donor species. Together, these results demonstrate that gut microbiome can influence host diet selection behavior, perhaps by mediating the availability of essential amino acids, thereby revealing a mechanism by which the gut microbiota can influence host foraging behavior. 
    more » « less