We present the application of a previously proposed multiple-Gaussian approach to characterize ultrashort vacuum (VUV) and deep ultraviolet (DUV) pulses via auto- and cross-correlation methods. The knowledge of the temporal variation of amplitude and phase of such pulses is important for spectroscopic and dynamical imaging techniques. The method, which is an extension of the single Gaussian autocorrelation technique, is based on the expansion of the pulse in a series of Gaussian functions at different frequencies and the use of analytic solutions for two-photon ionization of atoms by Gaussian pulses. Using this approach we compare the characterization of a pulse via the auto- and the cross-correlation techniques and find that an accurate characterization even in the case of more complex pulse forms can be achieved. Furthermore, the comparison of the application of unchirped and chirped Gaussian pulses reveals some specific advantages in the use of pulses with a linear chirp. Finally, we quantify our conclusions from the qualitative comparisons by defining errors and using results from information theory.
more »
« less
Characterization of vacuum and deep ultraviolet pulses via two-photon autocorrelation signals
Characterization of ultrashort vacuum and deep ultraviolet pulses is important in view of applications of those pulses for spectroscopic and dynamical imaging of atoms, molecules, and materials. We present an extension of the autocorrelation technique, applied for measurement of the pulse duration via a single Gaussian function. Analytic solutions for two-photon ionization of atoms by Gaussian pulses are used along with an expansion of the pulse to be characterized using multiple Gaussians at multi-color central frequencies. This approach allows one to use two-photon autocorrelation signals to characterize isolated ultrashort pulses and pulse trains, i.e., the time-dependent amplitude and phase variation of the electric field. The potential of the method is demonstrated using vacuum and deep ultraviolet pulses and pulse trains obtained from numerical simulations of macroscopic high harmonic spectra.
more »
« less
- Award ID(s):
- 1734006
- PAR ID:
- 10251326
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 13
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 3083
- Size(s):
- Article No. 3083
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The paper [R .T. Sandberg and A. G. R. Thomas, Phys. Rev. Lett. 130, 085001 (2023)] proposed a scheme to generate ultrashort, high energy pulses of XUV photons through dephasingless photon acceleration in a beam-driven plasma wakefield. An ultrashort laser pulse is placed in the plasma wake behind a relativistic electron bunch so that it experiences a density gradient and therefore shifts up in frequency. Using a tapered density profile provides phase-matching between the driver and witness pulses. In this paper, we study via particle-in-cell simulation the limits, practical realization, and 3D considerations for beam-driven photon acceleration using the tapered plasma density profile. We study increased efficiency by the use of a chirped drive pulse, establishing the necessity of the density profile shape we derived as opposed to a simple linear ramp, but also demonstrating that a piecewise representation of the profile—as could be experimentally achieved by a series of gas cells—is adequate for achieving phase matching. Scalings to even higher frequency shifts are given.more » « less
-
Abstract High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstractmore » « less
-
Time-correlated single-photon counting (TCSPC) is an enabling technology for applications such as low-light fluorescence lifetime microscopy and photon counting time-of-flight (ToF) 3D imaging. However, state-of-the-art TCSPC single-photon timing resolution (SPTR) is limited to 3–100 ps by single-photon detectors. Here, we experimentally demonstrate a time-magnified TCSPC (TM-TCSPC) that achieves an ultrashort SPTR of 550 fs with an off-the-shelf single-photon detector. The TM-TCSPC can resolve ultrashort pulses with a 130-fs pulse width difference at a 22-fs accuracy. When applied to photon counting ToF 3D imaging, the TM-TCSPC greatly suppresses the range walk error that limits all photon counting ToF 3D imaging systems by 99.2% and thus provides high depth accuracy and precision of 26 µm and 3 µm, respectively.more » « less
-
We explore how the spectral phase of attosecond pulse trains influences the optical cross section in transient absorption (TA) spectroscopy. The interaction of extreme ultraviolet (XUV) and time-delayed near-infrared (NIR) fields with an atomic or molecular system governs the dynamics. As already shown in RABBITT experiments (Reconstruction of Attosecond Beating by Interference of Two-Photon Transitions), the spectral phase of the XUV pulses can be extracted from the photoionization spectrum as a function of the time delay. Similarly, this XUV phase imprints itself on delay-dependent optical cross-section oscillations. With a perturbative analytical approach and by simulating the quantum dynamics both in a few-level model and via solving the time-dependent Schrödinger equation for atomic hydrogen, we reveal the similarity between the spectral phase in RABBITT and TA spectroscopy. Published by the American Physical Society2025more » « less
An official website of the United States government
