skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pulse characterization via two-photon auto- and cross-correlation
We present the application of a previously proposed multiple-Gaussian approach to characterize ultrashort vacuum (VUV) and deep ultraviolet (DUV) pulses via auto- and cross-correlation methods. The knowledge of the temporal variation of amplitude and phase of such pulses is important for spectroscopic and dynamical imaging techniques. The method, which is an extension of the single Gaussian autocorrelation technique, is based on the expansion of the pulse in a series of Gaussian functions at different frequencies and the use of analytic solutions for two-photon ionization of atoms by Gaussian pulses. Using this approach we compare the characterization of a pulse via the auto- and the cross-correlation techniques and find that an accurate characterization even in the case of more complex pulse forms can be achieved. Furthermore, the comparison of the application of unchirped and chirped Gaussian pulses reveals some specific advantages in the use of pulses with a linear chirp. Finally, we quantify our conclusions from the qualitative comparisons by defining errors and using results from information theory.  more » « less
Award ID(s):
2207995
PAR ID:
10541327
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
20
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 34732
Size(s):
Article No. 34732
Sponsoring Org:
National Science Foundation
More Like this
  1. Characterization of ultrashort vacuum and deep ultraviolet pulses is important in view of applications of those pulses for spectroscopic and dynamical imaging of atoms, molecules, and materials. We present an extension of the autocorrelation technique, applied for measurement of the pulse duration via a single Gaussian function. Analytic solutions for two-photon ionization of atoms by Gaussian pulses are used along with an expansion of the pulse to be characterized using multiple Gaussians at multi-color central frequencies. This approach allows one to use two-photon autocorrelation signals to characterize isolated ultrashort pulses and pulse trains, i.e., the time-dependent amplitude and phase variation of the electric field. The potential of the method is demonstrated using vacuum and deep ultraviolet pulses and pulse trains obtained from numerical simulations of macroscopic high harmonic spectra. 
    more » « less
  2. Abstract We investigate the use of bright single pulses from the Crab pulsar to determine separately the dispersion measure (DM) for the Main Pulse and Interpulse components. We develop two approaches using cross-correlation functions (CCFs). The first method computes the CCF of the total intensity of each of the 64 frequency channels with a reference channel and converts the time lag of maximum correlation into a DM. The second method separately computes the CCF between every pair of channels for each individual bright pulse and extracts an average DM from the distribution of all channel-pair DMs. Both methods allow the determination of the DM with a relative uncertainty of better than 10−5and provide robust estimates for the uncertainty of the best-fit value. We find differences in DM between the Main Pulse, the Low Frequency Interpulse, and the High Frequency Interpulse using both methods in a frequency range from 4 to 6 GHz. Earlier observations of the High Frequency Interpulse carried out by Hankins et al. (2016) resulted in DMHFIP–DMMPof 0.010 ± 0.016 pc cm−3. Our results indicate a DMHFIP–DMMPof 0.0127 ± 0.0011 pc cm−3(with DMcompbeing the DM value of the respective emission component), confirming earlier results with an independent method. During our studies we also find a relation between the brightness of single pulses in the High Frequency Interpulse and their DM. We also discuss the application of the developed methods on the identification of substructures in the case of Fast Radio Bursts. 
    more » « less
  3. THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy. 
    more » « less
  4. We demonstrate spectral broadening and compression of amplified pulses from a titanium sapphire laser system using an argon-filled stretched, hollow-core fiber and an acousto-optic modulator based pulse-shaper. We characterize the pulses using pulse-shaper assisted collinear frequency resolved optical gating, pulse-shaper assisted D-scans, and D-scans using a variable path length water cell. The different compression and characterization approaches consistently compress the pulses down to < 6 fs, less than ∼1 fs from the transform limit. We discuss prospects for pulse shape spectroscopy with these broadband pulses, given our control over the spectral amplitude and phase. 
    more » « less
  5. Ultrafast pulse-beam characterization is critical for diverse scientific and industrial applications from micromachining to generating the highest intensity laser pulses. The four-dimensional structure of a pulse-beam, E ~<#comment/> ( x , y , z , ω<#comment/> ) , can be fully characterized by coupling spatiospectral metrology with spectral phase measurement. When temporal pulse dynamics are not of primary interest, spatiospectral characterization of a pulse-beam provides crucial information even without spectral phase. Here we demonstrate spatiospectral characterization of pulse-beams via multiplexed broadband ptychography. The complex spatial profiles of multiple spectral components, E ~<#comment/> ( x , y , ω<#comment/> ) , from modelocked Ti:sapphire and from extreme ultra-violet pulse-beams are reconstructed with minimum intervening optics and no refocusing. Critically, our technique does not require spectral filters, interferometers, or reference pulses. 
    more » « less