skip to main content


Title: Conformational Control of DNA Origami by DNA Oligomers, Intercalators and UV Light
DNA origami has garnered great attention due to its excellent programmability and precision. It offers a powerful means to create complex nanostructures which may not be possible by other methods. The macromolecular structures may be used as static templates for arranging proteins and other molecules. They are also capable of undergoing structural transformation in response to external signals, which may be exploited for sensing and actuation at the nanoscale. Such on-demand reconfigurations are executed mostly by DNA oligomers through base-pairing and/or strand displacement, demonstrating drastic shape changes between two different states, for example, open and close. Recent studies have developed new mechanisms to modulate the origami conformation in a controllable, progressive manner. Here we present several methods for conformational control of DNA origami nanostructures including chemical adducts and UV light as well as widely applied DNA oligomers. The detailed methods should be useful for beginners in the field of DNA nanotechnology.  more » « less
Award ID(s):
1710344
NSF-PAR ID:
10251753
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Methods and Protocols
Volume:
4
Issue:
2
ISSN:
2409-9279
Page Range / eLocation ID:
38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA origami is an excellent tool for building complex artificial nanostructures. Functionalization of these structures provides the possibility of precise organization of matter at the nanoscale. In practice, efforts in this endeavour can be impeded by electrostatic repulsion or other dynamics at the molecular scale, resulting in uncompliant local structures. Using single molecule FRET microscopy combined with coarse-grained Brownian dynamics simulations, we investigated here the local structure around the lid of a DNA origami box, which can be opened by specific DNA keys. We found that FRET signals for the closed box depend on buffer ion concentrations and small changes to the DNA structure design. Simulations provided a view of the global and local structure and showed that the distance between the box wall and lid undergoes fluctuations. These results provide methods to vizualise and improve the local structure of three-dimensional DNA origami assemblies and offer guidance for exercising control over placement of chemical groups and ligands. 
    more » « less
  2. Zhang, Yuliang (Ed.)
    DNA origami purification is essential for many fields, including biophysics, molecular engineering, and therapeutics. The increasing interest in DNA origami has led to the development of rate-zonal centrifugation (RZC) as a scalable, high yield, and contamination-free method for purifying DNA origami nanostructures. RZC purification uses a linear density gradient of viscous media, such as glycerol or sucrose, to separate molecules according to their mass and shape. However, many methods for creating density gradients are time-consuming because they rely on slow passive diffusion. To expedite the preparation time, we used a LEGO gradient mixer to generate rotational motion and rapidly create a quasi-continuous density gradient with a minimal layering of the viscous media. Rotating two layers of differing concentrations at an angle decreases the time needed to form the density gradient from a few hours to minutes. In this study, the density gradients created by the LEGO gradient mixer were used to purify 3 DNA origami shapes that have different aspect ratios and numbers of components, with an aspect ratio ranging from 1:1 to 1:100 and the number of components up to 2. The gradient created by our LEGO gradient mixer is sufficient to purify folded DNA origami nanostructures from excess staple strands, regardless of their aspect ratios. Moreover, the gradient was able to separate DNA origami dimers from DNA origami monomers. In light of recent advances in large-scale DNA origami production, our method provides an alternative for purifying DNA origami nanostructures in large (gram) quantities in resource-limited settings. 
    more » « less
  3. null (Ed.)
    DNA origami has emerged as a versatile method to synthesize nanostructures with high precision. This bottom-up self-assembly approach can produce not only complex static architectures, but also dynamic reconfigurable structures with tunable properties. While DNA origami has been explored increasingly for diverse applications, such as biomedical and biophysical tools, related mechanics are also under active investigation. Here we studied the structural properties of DNA origami and investigated the energy needed to deform the DNA structures. We used a single-layer rectangular DNA origami tile as a model system and studied its cyclization process. This origami tile was designed with an inherent twist by placing crossovers every 16 base-pairs (bp), corresponding to a helical pitch of 10.67 bp/turn, which is slightly different from that of native B-form DNA (~10.5 bp/turn). We used molecular dynamics (MD) simulations based on a coarse-grained model on an open-source computational platform, oxDNA. We calculated the energies needed to overcome the initial curvature and induce mechanical deformation by applying linear spring forces. We found that the initial curvature may be overcome gradually during cyclization and a total of ~33.1 kcal/mol is required to complete the deformation. These results provide insights into the DNA origami mechanics and should be useful for diverse applications such as adaptive reconfiguration and energy absorption. 
    more » « less
  4. Abstract

    The use of DNA‐based nanomaterials in biomedical applications is continuing to grow, yet more emphasis is being put on the need for guaranteed structural stability of DNA nanostructures in physiological conditions. Various methods have been developed to stabilize DNA origami against low concentrations of divalent cations and the presence of nucleases. However, existing strategies typically require the complete encapsulation of nanostructures, which makes accessing the encased DNA strands difficult, or chemical modification, such as covalent crosslinking of DNA strands. We present a stabilization method involving the synthesis of DNA brick nanostructures with dendritic oligonucleotides attached to the outer surface. We find that nanostructures assembled from DNA brick motifs remain stable against denaturation without any chemical modifications. Furthermore, densely coating the outer surface of DNA brick nanostructures with dendritic oligonucleotides prevents nuclease digestion.

     
    more » « less
  5. Abstract

    The use of DNA‐based nanomaterials in biomedical applications is continuing to grow, yet more emphasis is being put on the need for guaranteed structural stability of DNA nanostructures in physiological conditions. Various methods have been developed to stabilize DNA origami against low concentrations of divalent cations and the presence of nucleases. However, existing strategies typically require the complete encapsulation of nanostructures, which makes accessing the encased DNA strands difficult, or chemical modification, such as covalent crosslinking of DNA strands. We present a stabilization method involving the synthesis of DNA brick nanostructures with dendritic oligonucleotides attached to the outer surface. We find that nanostructures assembled from DNA brick motifs remain stable against denaturation without any chemical modifications. Furthermore, densely coating the outer surface of DNA brick nanostructures with dendritic oligonucleotides prevents nuclease digestion.

     
    more » « less