skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The ETS-transcription factor Pointed is sufficient to regulate the posterior fate of the follicular epithelium
The Janus-kinase/Signal Transducers and Activators of Transcription (JAK/STAT) pathway regulates the anterior posterior axis of the Drosophila follicle cells. In the anterior, it activates the bone morphogenetic protein (BMP) signaling pathway through expression of the BMP ligand, decapentaplegic (dpp). In the posterior, JAK/STAT works with the epidermal growth factor receptor (EGFR) pathway to express the T-box transcription factor midline (mid). While MID is necessary in establishing the posterior fate of the egg chamber, we show that it is not sufficient to determine a posterior fate. The ETS-transcription factor pointed (pnt) is expressed in an overlapping domain to mid in the follicle cells. This study shows that pnt is upstream of mid, and it is sufficient to induce a posterior fate in the anterior end, which is characterized by the induction of mid, the prevention of the stretched cells formation, and the abrogation of border cells migration. We demonstrate that the anterior BMP signaling is abolished by PNT through dpp repression. However, ectopic DPP cannot rescue this repression, suggesting additional targets of PNT participate in the posterior fate determination.  more » « less
Award ID(s):
1926802
PAR ID:
10251906
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Development
ISSN:
0950-1991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled. 
    more » « less
  2. Schneider, David S (Ed.)
    Innate immune responses that allow hosts to survive infection depend on the action of multiple conserved signaling pathways. Pathogens and parasites in turn have evolved virulence factors to target these immune signaling pathways in an attempt to overcome host immunity. Consequently, the interactions between host immune molecules and pathogen virulence factors play an important role in determining the outcome of an infection. The immune responses ofDrosophila melanogasterprovide a valuable model to understand immune signaling and host-pathogen interactions. Flies are commonly infected by parasitoid wasps and mount a coordinated cellular immune response following infection. This response is characterized by the production of specialized blood cells called lamellocytes that form a tight capsule around wasp eggs in the host hemocoel. The conserved JAK-STAT signaling pathway has been implicated in lamellocyte proliferation and is required for successful encapsulation of wasp eggs. Here we show that activity ofStat92E, theD.melanogasterSTAT ortholog, is induced in immune tissues following parasitoid infection. Virulent wasp species are able to suppressStat92Eactivity during infection, suggesting they target JAK-STAT pathway activation as a virulence strategy. Furthermore, two wasp species (Leptopilina guineaensisandGanaspis xanthopoda) suppress phenotypes associated with a gain-of-function mutation inhopscotch, theD.melanogasterJAK ortholog, indicating that they inhibit the activity of the core signaling components of the JAK-STAT pathway. Our data suggest that parasitoid wasp virulence factors block JAK-STAT signaling to overcome fly immune defenses. 
    more » « less
  3. Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium-binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) mutants have a small body size, while overexpression of smoc-1 leads to a long body size and increased expression of the RAD-SMAD (reporter acting downstream of SMAD) BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double-mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell nonautonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1's function in modulating BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans. 
    more » « less
  4. The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning (1). However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and Bone Morphogenetic Protein (BMP/Dpp) release for Drosophila wing development (2). Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology (2, 3). Ion channels impact development of several tissues and organisms in which BMP signaling is essential (2-15). In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin (15-21). Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum Ca++ release into the cytoplasm to regulate the release of BMP. To test this hypothesis, we reduced expression of proteins that control endoplasmic reticulum calcium (Stim, Orai, SERCA, SK, and Best2) and documented wing phenotypes. We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced Dpp/BMP release in the wing disc. Together, our results suggest control of endoplasmic reticulum is required for Dpp/BMP release. 
    more » « less
  5. Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. This study’s goal was to identify the signaling drivers and pathways that modulate glomerular endothelial dysfunction in DKD via artificial intelligence-enabled literature-based discovery. Cross-domain text mining of 33+ million PubMed articles was performed with SemNet 2.0 to identify and rank multi-scalar and multi-factorial pathophysiological concepts related to DKD. A set of identified relevant genes and proteins that regulate different pathological events associated with DKD were analyzed and ranked using normalized mean HeteSim scores. High-ranking genes and proteins intersected three domains—DKD, the immune response, and glomerular endothelial cells. The top 10% of ranked concepts were mapped to the following biological functions: angiogenesis, apoptotic processes, cell adhesion, chemotaxis, growth factor signaling, vascular permeability, the nitric oxide response, oxidative stress, the cytokine response, macrophage signaling, NFκB factor activity, the TLR pathway, glucose metabolism, the inflammatory response, the ERK/MAPK signaling response, the JAK/STAT pathway, the T-cell-mediated response, the WNT/β-catenin pathway, the renin–angiotensin system, and NADPH oxidase activity. High-ranking genes and proteins were used to generate a protein–protein interaction network. The study results prioritized interactions or molecules involved in dysregulated signaling in DKD, which can be further assessed through biochemical network models or experiments. 
    more » « less