In bandit multiple hypothesis testing, each arm corresponds to a different null hypothesis that we wish to test, and the goal is to design adaptive algorithms that correctly identify large set of interesting arms (true discoveries), while only mistakenly identifying a few uninteresting ones (false discoveries). One common metric in non-bandit multiple testing is the false discovery rate (FDR). We propose a unified, modular framework for bandit FDR control that emphasizes the decoupling of exploration and summarization of evidence. We utilize the powerful martingale-based concept of “e-processes” to ensure FDR control for arbitrary composite nulls, exploration rules and stopping times in generic problem settings. In particular, valid FDR control holds even if the reward distributions of the arms could be dependent, multiple arms may be queried simultaneously, and multiple (cooperating or competing) agents may be querying arms, covering combinatorial semi-bandit type settings as well. Prior work has considered in great detail the setting where each arm’s reward distribution is independent and sub-Gaussian, and a single arm is queried at each step. Our framework recovers matching sample complexity guarantees in this special case, and performs comparably or better in practice. For other settings, sample complexities will depend on the finer details of the problem (composite nulls being tested, exploration algorithm, data dependence structure, stopping rule) and we do not explore these; our contribution is to show that the FDR guarantee is clean and entirely agnostic to these details.
more »
« less
Asynchronous Online Testing of Multiple Hypotheses
We consider the problem of asynchronous online testing, aimed at providing control of the false discovery rate (FDR) during a continual stream of data collection and testing, where each test may be a sequential test that can start and stop at arbitrary times. This setting increasingly characterizes real-world applications in science and industry, where teams of researchers across large organizations may conduct tests of hypotheses in a decentralized manner. The overlap in time and space also tends to induce dependencies among test statistics, a challenge for classical methodology, which either assumes (overly optimistically) independence or (overly pessimistically) arbitrary dependence between test statistics. We present a general framework that addresses both of these issues via a unified computational abstraction that we refer to as “conflict sets.” We show how this framework yields algorithms with formal FDR guarantees under a more intermediate, local notion of dependence. We illustrate our algorithms in simulations by comparing to existing algorithms for online FDR control.
more »
« less
- Award ID(s):
- 1945266
- PAR ID:
- 10251939
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 22
- ISSN:
- 1533-7928
- Page Range / eLocation ID:
- 1-39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms of the p-values to ensure differential privacy and to select an approximately smallest p-value serving as a promising candidate at each iteration; the selected p-values are further supplied to the BHq and our private procedure releases only the rejected ones. Moreover, we develop a new technique that is based on a backward submartingale for proving FDR control of a broad class of multiple testing procedures, including our private procedure, and both the BHq step- up and step-down procedures. As a novel aspect, the proof works for arbitrary dependence between the true null and false null test statistics, while FDR control is maintained up to a small multiplicative factor.more » « less
-
We derive new algorithms for online multiple testing that provably control false discovery exceedance (FDX) while achieving orders of magnitude more power than previous methods. This statistical advance is enabled by the development of new algorithmic ideas: earlier algorithms are more “static” while our new ones allow for the dynamical adjustment of testing levels based on the amount of wealth the algorithm has accumulated. We demonstrate that our algorithms achieve higher power in a variety of synthetic experiments. We also prove that SupLORD can provide error control for both FDR and FDX, and controls FDR at stopping times. Stopping times are particularly important as they permit the experimenter to end the experiment arbitrarily early while maintaining desired control of the FDR. SupLORD is the first non-trivial algorithm, to our knowledge, that can control FDR at stopping times in the online setting.more » « less
-
Abstract This study introduces a novelp-value-based multiple testing approach tailored for generalized linear models. Despite the crucial role of generalized linear models in statistics, existing methodologies face obstacles arising from the heterogeneous variance of response variables and complex dependencies among estimated parameters. Our aim is to address the challenge of controlling the false discovery rate (FDR) amidst arbitrarily dependent test statistics. Through the development of efficient computational algorithms, we present a versatile statistical framework for multiple testing. The proposed framework accommodates a range of tools developed for constructing a new model matrix in regression-type analysis, including random row permutations and Model-X knockoffs. We devise efficient computing techniques to solve the encountered non-trivial quadratic matrix equations, enabling the construction of pairedp-values suitable for the two-step multiple testing procedure proposed by Sarkar and Tang (Biometrika 109(4): 1149–1155, 2022). Theoretical analysis affirms the properties of our approach, demonstrating its capability to control the FDR at a given level. Empirical evaluations further substantiate its promising performance across diverse simulation settings.more » « less
-
The reproducibility debate has caused a renewed interest in changing how one reports uncertainty, from 𝑝-value for testing a null hypothesis to a confidence interval (CI) for the corresponding parameter. When CIs for multiple selected parameters are being reported, the analog of the false discovery rate (FDR) is the false coverage rate (FCR), which is the expected ratio of number of reported CIs failing to cover their respective parameters to the total number of reported CIs. Here, we consider the general problem of FCR control in the online setting, where one encounters an infinite sequence of fixed unknown parameters ordered by time. We propose a novel solution to the problem which only requires the scientist to be able to construct marginal CIs. As special cases, our framework yields algorithms for online FDR control and online sign-classification procedures that control the false sign rate (FSR). All of our methodology applies equally well to prediction intervals, having particular implications for selective conformal inference.more » « less
An official website of the United States government

