skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic algorithms for online multiple testing
We derive new algorithms for online multiple testing that provably control false discovery exceedance (FDX) while achieving orders of magnitude more power than previous methods. This statistical advance is enabled by the development of new algorithmic ideas: earlier algorithms are more “static” while our new ones allow for the dynamical adjustment of testing levels based on the amount of wealth the algorithm has accumulated. We demonstrate that our algorithms achieve higher power in a variety of synthetic experiments. We also prove that SupLORD can provide error control for both FDR and FDX, and controls FDR at stopping times. Stopping times are particularly important as they permit the experimenter to end the experiment arbitrarily early while maintaining desired control of the FDR. SupLORD is the first non-trivial algorithm, to our knowledge, that can control FDR at stopping times in the online setting.  more » « less
Award ID(s):
1945266
PAR ID:
10334957
Author(s) / Creator(s):
;
Publisher / Repository:
PMLR (JMLR W&CP)
Date Published:
Journal Name:
Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference, PMLR
Volume:
145
Page Range / eLocation ID:
955-986
Format(s):
Medium: X
Location:
Mathematical and Scientific Machine Learning
Sponsoring Org:
National Science Foundation
More Like this
  1. In bandit multiple hypothesis testing, each arm corresponds to a different null hypothesis that we wish to test, and the goal is to design adaptive algorithms that correctly identify large set of interesting arms (true discoveries), while only mistakenly identifying a few uninteresting ones (false discoveries). One common metric in non-bandit multiple testing is the false discovery rate (FDR). We propose a unified, modular framework for bandit FDR control that emphasizes the decoupling of exploration and summarization of evidence. We utilize the powerful martingale-based concept of “e-processes” to ensure FDR control for arbitrary composite nulls, exploration rules and stopping times in generic problem settings. In particular, valid FDR control holds even if the reward distributions of the arms could be dependent, multiple arms may be queried simultaneously, and multiple (cooperating or competing) agents may be querying arms, covering combinatorial semi-bandit type settings as well. Prior work has considered in great detail the setting where each arm’s reward distribution is independent and sub-Gaussian, and a single arm is queried at each step. Our framework recovers matching sample complexity guarantees in this special case, and performs comparably or better in practice. For other settings, sample complexities will depend on the finer details of the problem (composite nulls being tested, exploration algorithm, data dependence structure, stopping rule) and we do not explore these; our contribution is to show that the FDR guarantee is clean and entirely agnostic to these details. 
    more » « less
  2. null (Ed.)
    We consider the problem of asynchronous online testing, aimed at providing control of the false discovery rate (FDR) during a continual stream of data collection and testing, where each test may be a sequential test that can start and stop at arbitrary times. This setting increasingly characterizes real-world applications in science and industry, where teams of researchers across large organizations may conduct tests of hypotheses in a decentralized manner. The overlap in time and space also tends to induce dependencies among test statistics, a challenge for classical methodology, which either assumes (overly optimistically) independence or (overly pessimistically) arbitrary dependence between test statistics. We present a general framework that addresses both of these issues via a unified computational abstraction that we refer to as “conflict sets.” We show how this framework yields algorithms with formal FDR guarantees under a more intermediate, local notion of dependence. We illustrate our algorithms in simulations by comparing to existing algorithms for online FDR control. 
    more » « less
  3. null (Ed.)
    omparing the spatial characteristics of spatiotemporal random fields is often at demand. However, the comparison can be challenging due to the high-dimensional feature and dependency in the data. We develop a new multiple testing approach to detect local differences in the spatial characteristics of two spatiotemporal random fields by taking the spatial information into account. Our method adopts a twocomponent mixture model for location wise p-values and then derives a new false discovery rate (FDR) control, called mirror procedure, to determine the optimal rejection region. This procedure is robust to model misspecification and allows for weak dependency among hypotheses. To integrate the spatial heterogeneity, we model the mixture probability as well as study the benefit if any of allowing the alternative distribution to be spatially varying. AnEM-algorithm is developed to estimate the mixture model and implement the FDR procedure. We study the FDR control and the power of our new approach both theoretically and numerically, and apply the approach to compare the mean and teleconnection pattern between two synthetic climate fields. Supplementary materials for this article are available online. 
    more » « less
  4. One important partition of algorithms for controlling the false discovery rate (FDR) in multiple testing is into offline and online algorithms. The first generally achieve significantly higher power of discovery, while the latter allow making decisions sequentially as well as adaptively formulating hypotheses based on past observations. Using existing methodology, it is unclear how one could trade off the benefits of these two broad families of algorithms, all the while preserving their formal FDR guarantees. To this end, we introduce Batch-BH and Batch-St-BH, algorithms for controlling the FDR when a possibly infinite sequence of batches of hypotheses is tested by repeated application of one of the most widely used offline algorithms, the Benjamini-Hochberg (BH) method or Storey’s improvement of the BH method. We show that our algorithms interpolate between existing online and offline methodology, thus trading off the best of both worlds. 
    more » « less
  5. Background Epigenome-wide association studies (EWAS), which seek the association between epigenetic marks and an outcome or exposure, involve multiple hypothesis testing. False discovery rate (FDR) control has been widely used for multiple testing correction. However, traditional FDR control methods do not use auxiliary covariates, and they could be less powerful if the covariates could inform the likelihood of the null hypothesis. Recently, many covariate-adaptive FDR control methods have been developed, but application of these methods to EWAS data has not yet been explored. It is not clear whether these methods can significantly improve detection power, and if so, which covariates are more relevant for EWAS data. Results In this study, we evaluate the performance of five covariate-adaptive FDR control methods with EWAS-related covariates using simulated as well as real EWAS datasets. We develop an omnibus test to assess the informativeness of the covariates. We find that statistical covariates are generally more informative than biological covariates, and the covariates of methylation mean and variance are almost universally informative. In contrast, the informativeness of biological covariates depends on specific datasets. We show that the independent hypothesis weighting (IHW) and covariate adaptive multiple testing (CAMT) method are overall more powerful, especially for sparse signals, and could improve the detection power by a median of 25% and 68% on real datasets, compared to the ST procedure. We further validate the findings in various biological contexts. Conclusions Covariate-adaptive FDR control methods with informative covariates can significantly increase the detection power for EWAS. For sparse signals, IHW and CAMT are recommended. 
    more » « less