skip to main content

Title: Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies
ABSTRACT Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (ΣSFR). These results support the notion that the Kennicutt–Schmidt relation arises because ΣSFR and the gas surface density (Σg) are connected via the ISM mid-plane pressure.  more » « less
Award ID(s):
2001905 1715216 1652522 1715101
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
3664 to 3683
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Cosmic rays (CRs) are an important component in the interstellar medium, but their effect on the dynamics of the disc–halo interface (<10 kpc from the disc) is still unclear. We study the influence of CRs on the gas above the disc with high-resolution FIRE-2 cosmological simulations of late-type L⋆ galaxies at redshift z ∼ 0. We compare runs with and without CR feedback (with constant anisotropic diffusion κ∥ ∼ 3 × 1029 cm2 s−1 and streaming). Our simulations capture the relevant disc–halo interactions, including outflows, inflows, and galactic fountains. Extra-planar gas in all of the runs satisfies dynamical balance, where total pressure balances the weight of the overlying gas. While the kinetic pressure from non-uniform motion (≳1 kpc scale) dominates in the mid-plane, thermal and bulk pressures (or CR pressure if included) take over at large heights. We find that with CR feedback, (1) the warm (∼104 K) gas is slowly accelerated by CRs; (2) the hot (>5 × 105 K) gas scale height is suppressed; (3) the warm-hot (2 × 104–5 × 105 K) medium becomes the most volume-filling phase in the disc–halo interface. We develop a novel conceptual model of the near-disc gas dynamics in low-redshift L⋆ galaxies: with CRs, the disc–halo interface is filled with CR-driven warm winds and hot superbubbles that are propagating into the circumgalactic medium with a small fraction falling back to the disc. Without CRs, most outflows from hot superbubbles are trapped by the existing hot halo and gravity, so typically they form galactic fountains.

    more » « less

    We use local stratified shearing-box simulations to elucidate the impact of two-temperature thermodynamics on the thermal structure of coronae in radiatively efficient accretion flows. Rather than treating the coronal plasma as an isothermal fluid, we use a simple, parametrized cooling function that models the collisional transfer of energy from the ions to the rapidly cooling leptons. Two-temperature models naturally form temperature inversions, with a hot, magnetically dominated corona surrounding a cold disc. Simulations with net vertical flux (NF) magnetic fields launch powerful magnetocentrifugal winds that would enhance accretion in a global system. The outflow rates are much better converged with increasing box height than analogous isothermal simulations, suggesting that the winds into two-temperature coronae may be sufficiently strong to evaporate a thin disc and form a radiatively inefficient accretion flow under some conditions. We find evidence for multiphase structure in the corona, with broad density and temperature distributions, and we propose criteria for the formation of a multiphase corona. The fraction of cooling in the surface layers of the disc is substantially larger for NF fields compared to zero net-flux configurations, with moderate NF simulations radiating ≳30 per cent of the flow’s total luminosity above two mid-plane scale heights. Our work shows that NF fields may efficiently power the coronae of luminous Seyfert galaxies and quasars, providing compelling motivation for future studies of the heating mechanisms available to NF fields and the interplay of radiation with two-temperature thermodynamics.

    more » « less
  3. Abstract We study the propagation of mildly relativistic cosmic rays (CRs) in multiphase interstellar medium environments with conditions typical of nearby disk galaxies. We employ the techniques developed in Armillotta et al. to postprocess three high-resolution TIGRESS magnetohydrodynamic simulations modeling local patches of star-forming galactic disks. Together, the three simulations cover a wide range of gas surface density, gravitational potential, and star formation rate (SFR). Our prescription for CR propagation includes the effects of advection by the background gas, streaming along the magnetic field at the local ion Alfvén speed, and diffusion relative to the Alfvén waves, with the diffusion coefficient set by the balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We find that the combined transport processes are more effective in environments with higher SFR. These environments are characterized by higher-velocity hot outflows (created by clustered supernovae) that rapidly advect CRs away from the galactic plane. As a consequence, the ratio of midplane CR pressure to midplane gas pressures decreases with increasing SFR. We also use the postprocessed simulations to make predictions regarding the potential dynamical impacts of CRs. The relatively flat CR pressure profiles near the midplane argue that they would not provide significant support against gravity for most of the ISM mass. However, the CR pressure gradients are larger than the other pressure gradients in the extraplanar region (∣ z ∣ > 0.5 kpc), suggesting that CRs may affect the dynamics of galactic fountains and/or winds. The degree of this impact is expected to increase in environments with lower SFR. 
    more » « less
  4. null (Ed.)
    Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics. 
    more » « less
  5. Abstract

    The circumgalactic medium (CGM) is often assumed to exist in or near hydrostatic equilibrium, with the regulation of accretion and the effects of feedback treated as perturbations to a stable balance between gravity and thermal pressure. We investigate global hydrostatic equilibrium in the CGM using four highly resolvedL*galaxies from the Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. The FOGGIE simulations were specifically targeted at fine spatial and mass resolution in the CGM (Δx≲ 1 kpch−1andM≃ 200M). We develop a new analysis framework that calculates the forces provided by thermal pressure gradients, turbulent pressure gradients, ram pressure gradients of large-scale radial bulk flows, centrifugal rotation, and gravity acting on the gas in the CGM. Thermal and turbulent pressure gradients vary strongly on scales of ≲5 kpc throughout the CGM. Thermal pressure gradients provide the main supporting force only beyond ∼0.25R200, or ∼50 kpc atz= 0. Within ∼0.25R200, turbulent pressure gradients and rotational support provide stronger forces than thermal pressure. More generally, we find that global equilibrium models are neither appropriate nor predictive for the small scales probed by absorption line observations of the CGM. Local conditions generally cannot be derived by assuming a global equilibrium, but an emergent global equilibrium balancing radially inward and outward forces is obtained when averaging over the nonequilibrium local conditions on large scales in space and time. Approximate hydrostatic equilibrium holds only at large distances from galaxies, even when averaging out small-scale variations.

    more » « less