skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum . Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.  more » « less
Award ID(s):
1756884
PAR ID:
10251969
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum . We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability. 
    more » « less
  2. Abstract Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low‐Fe stress‐induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low‐Fe stress, diatoms alter plastid‐specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid‐localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well‐studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid‐enriched fractions fromThalassiosira pseudonanato gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry‐based peptide identification and quantification, we analyzedT. pseudonanagrown under Fe‐replete and ‐limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light‐harvesting proteins. In silico localization predictions of proteins identified in this plastid‐enriched proteome allowed for an in‐depth comparison of theoretical versus observed plastid‐localization, providing evidence for the potential of additional protein import pathways into the diatom plastid. 
    more » « less
  3. Marine diazotrophic cyanobacteria play a crucial role in oceanic nitrogen cycling, supporting primary production and ecosystem balance. Crocosphaera watsonii WH8501 exemplifies this ability by temporally separating photosynthesis and diazotrophy to sustain metabolism. To investigate the regulatory mechanisms underlying this process, we employed LC/MS-MS proteomics in a diel culturing experiment, revealing tightly coordinated protein abundance patterns. Our findings showed a sophisticated temporal regulation of metabolic processes categorized within six distinct protein abundance clusters: (1) nitrogen fixation and amino acid biosynthesis proteins peaked during the night, while (2) glycogen metabolism and dark reactions of photosynthesis were most abundant during the night and day-night transition, likely supporting carbon consumption and energy production. Midday (3 and 4) was dominated by proteins related to photosynthesis, cellular division, and lipid synthesis, whereas late-day peaks (5) in peptide biosynthesis may facilitate nitrogenase complex formation. Notably, the day-night transition (6) exhibited fine-tuned coordination of nitrogenase assembly, with FeS cluster proteins preceding peak nitrogenase iron protein abundance, implying a temporally ordered sequence for functional enzyme formation. Within these categories, sharp temporal patterns emerged in iron trafficking to heme and iron cluster biosynthetic systems, consistent with the need to maintain tight control of iron distribution to metalloproteins at each temporal transition. These results highlight the intricate diel regulation that enables Crocosphaera to balance nitrogen fixation and photosynthesis within a single cell. The observed coordination supports the existence of a complex regulatory system ensuring optimal metabolic performance, reinforcing the critical role of temporal control in sustaining these globally significant biological processes. 
    more » « less
  4. This dataset includes trace metal (iron, manganese, cobalt, nickel, copper, zinc, cadmium, lead) and macronutrient (nitrate&nitrite, nitrite, phosphate, silicic acid) concentration data from incubation experiments conducted on board the RRS Discovery during the EXPORTS North Atlantic campaign at the Porcupine Abyssal Plain-Sustained Observatory (PAP-SO) site (DY131). In these experiments, additions of macronutrients (N, P, Si) and Fe were used to assess the level of Si, N, and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in-situ communities. This research project focuses on the vertical export of the carbon associated with a major group of phytoplankton, the diatoms in the North Atlantic near the Porcupine Abyssal Plain. The major objective is to understand how diatom community composition and the prevailing nutrient conditions create taxonomic differences in metabolic state that combine to direct diatom taxa to different carbon export pathways. The focus is on diatoms, given their large contribution to global marine primary productivity and carbon export which translates into a significant contribution to the biogeochemical cycling of carbon (C), nitrogen (N), phosphorus (P), iron (Fe) and silicon (Si). It is hypothesized that the type and degree of diatom physiological stress are vital aspects of ecosystem state that drive export. To test this hypothesis, combined investigator expertise in phytoplankton physiology, genomics, and trace element chemistry is used to assess the rates of nutrient use and the genetic composition and response of diatom communities, with measurements of silicon and iron stress to evaluate stress as a predictor of the path of diatom carbon export. The EXPORTS field campaign in the North Atlantic sampled a retentive eddy over nearly a month in May 2021, which coincided with the decline of the North Atlantic Spring Bloom. 
    more » « less
  5. Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air–sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment. 
    more » « less