skip to main content

Title: High thermoelectric figure of merit of porous Si nanowires from 300 to 700 K
Abstract

Thermoelectrics operating at high temperature can cost-effectively convert waste heat and compete with other zero-carbon technologies. Among different high-temperature thermoelectrics materials, silicon nanowires possess the combined attributes of cost effectiveness and mature manufacturing infrastructures. Despite significant breakthroughs in silicon nanowires based thermoelectrics for waste heat conversion, the figure of merit (ZT) or operating temperature has remained low. Here, we report the synthesis of large-area, wafer-scale arrays of porous silicon nanowires with ultra-thin Si crystallite size of ~4 nm. Concurrent measurements of thermal conductivity (κ), electrical conductivity (σ), and Seebeck coefficient (S) on the same nanowire show aZTof 0.71 at 700 K, which is more than ~18 times higher than bulk Si. ThisZTvalue is more than two times higher than any nanostructured Si-based thermoelectrics reported in the literature at 700 K. Experimental data and theoretical modeling demonstrate that this work has the potential to achieve aZTof ~1 at 1000 K.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10252301
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values ofZT~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3and temperature between 600 and 700 K.

  2. Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is amongmore »the best observed in phosphides and can likely be improved with further optimization.« less
  3. Abstract

    Thermoelectrics are suited to converting dissipated heat into electricity for operating electronics, but the small voltage (~0.1 mV K−1) from the Seebeck effect has been one of the major hurdles in practical implementation. Here an approach with thermo-hydro-electrochemical effects can generate a large thermal-to-electrical energy conversion factor (TtoE factor), −87 mV K−1with low-cost carbon steel electrodes and a solid-state polyelectrolyte made of polyaniline and polystyrene sulfonate (PANI:PSS). We discovered that the thermo-diffusion of water in PANI:PSS under a temperature gradient induced less (or more) water on the hotter (or colder) side, raising (or lowering) the corrosion overpotential in the hotter (or colder) side and thereby generating output power between the electrodes. Our findings are expected to facilitate subsequent research for further increasing the TtoE factor and utilizing dissipated thermal energy.

  4. Thermoelectrics (TEs) are an important class of technology that harvest electric power directly from heat sources. When designing both high performance and environmentally friendly TE materials, the pseudo-cubic structure has great theoretical potential to maximize the dimensionless figure of merit ZT . The TE multinary single crystal with a pseudo-cubic structure paves a new path toward manipulating valley degeneracy and anisotropy with low thermal conductivity caused by short-range lattice distortion. Here, we report a record high ZT = 1.6 around 800 K realized in a totally environmentally benign p-type Na-doped Cu 2 ZnSnS 4 (CZTS) single crystal. The exceptional performance comes from a high power factor while maintaining intrinsically low thermal conductivity. The combination of the pseudo-cubic structure and intrinsic properties of the CZTS single crystal takes advantage of simple material tuning without complex techniques.
  5. Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca aremore »isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K.« less