This content will become publicly available on May 26, 2022
Folding-controlled assembly of ortho -phenylene-based macrocycles
The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho -phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers' conformational energy surfaces. A series of o -phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o -phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2 + 2] and [3 + 3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2 + 2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3 + 3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3 + 3] macrocycle products, even though the structural more »
- Award ID(s):
- 1904236
- Publication Date:
- NSF-PAR ID:
- 10252340
- Journal Name:
- Chemical Science
- Volume:
- 12
- Issue:
- 20
- Page Range or eLocation-ID:
- 6992 to 7002
- ISSN:
- 2041-6520
- Sponsoring Org:
- National Science Foundation
More Like this
-
The conversion of macrocyclic 1,4-diketones to highly strained para-phenylene rings has recently been reported by our laboratory. This synthetic strategy represents a non-cross-coupling-based approach to arene-bridged macrocycles, and an alternative to palladium- and nickel-mediated processes. In this Synpacts article we discuss the development of endgame aromatization protocols for the synthesis of increasingly strained arene systems, as well as potential advantages of the macrocyclic 1,4-diketone approach to selectively functionalized benzenoid macrocycles for future complexity building reactions. 1 Introduction 2 A Non-Cross-Coupling-Based Approach to Arene-Bridged Macro cycles 3 Macrocyclic 1,4-Diketones: Streamlined Synthesis and Size-Dependent Diastereoselective Grignard Reactions 4 Dehydrative Aromatization Reactions: Amore »
-
We demonstrated ion-mobility spectrometry mass spectrometry (IMS-MS) as a powerful tool for interrogating and preserving selective chemistry including non-covalent and host–guest complexes of m -xylene macrocycles formed in solution. The technique readily revealed the unique favorability of a thiourea-containing macrocycle MXT to Zn 2+ to form a dimer complex with the cation in an off-axis sandwich structure having the Zn–S bonds in a tetrahedral coordination environment. Replacing thiourea with urea generates MXU which formed high-order oligomerization with weak binding interactions to neutral DMSO guests detected at every oligomer size. The self-assembly pathway observed for this macrocycle is consistent with themore »
-
Carbohydrate derived low molecular weight organogelators are interesting compounds with many potential applications. Selective functionalization of the different hydroxyl substituents on d -glucose and d -glucosamine resulted in small molecular gelators. Previously we have found that the C-2 acylated derivatives including esters and carbamates of 4,6- O -benzylidene protected glucose and glucosamine derivatives have shown remarkable applications as molecular gelators. In this research, in order to probe the structural influence of sugar derivatives on molecular self-assembly, we introduced acylation functional groups to the 3-hydroxyl group of 4,6- O -benzylidene acetal protected N -acetyl glucosamine derivatives. A library of fourteen estermore »
-
In this paper, we show that the rigid-foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from the partition problem, and that rigid-foldability with optional creases is NP-hard by a reduction from the 1-in-3 SAT problem. Unlike flat-foldabilty of origami or flexibility of other kinematic linkages, whose complexity originates in the complexity of the layer ordering and possible self-intersection of the material, rigid foldabilltiy from a planar state is hard even though there is no potential self-intersection. In fact, the complexity comes from the combinatorial behavior of the different possible rigid folding configurations atmore »
-
Both the small and large subunits of the ribosome, the molecular machine that synthesizes proteins, are complexes of ribosomal RNAs (rRNAs) and a number of proteins. In bacteria, the small subunit has a single 16S rRNA whose folding is the first step in its assembly. The central domain of the 16S rRNA folds independently, driven either by Mg2+ions or by interaction with ribosomal proteins. To provide a quantitative description of ion-induced folding of the ∼350-nucleotide rRNA, we carried out extensive coarse-grained molecular simulations spanning Mg2+concentration between 0 and 30 mM. The Mg2+dependence of the radius of gyration shows that globallymore »