skip to main content

Title: Folding-controlled assembly of ortho -phenylene-based macrocycles
The self-assembly of foldamers into macrocycles is a simple approach to non-biological higher-order structure. Previous work on the co-assembly of ortho -phenylene foldamers with rod-shaped linkers has shown that folding and self-assembly affect each other; that is, the combination leads to new emergent behavior, such as access to otherwise unfavorable folding states. To this point this relationship has been passive. Here, we demonstrate control of self-assembly by manipulating the foldamers' conformational energy surfaces. A series of o -phenylene decamers and octamers have been assembled into macrocycles using imine condensation. Product distributions were analyzed by gel-permeation chromatography and molecular geometries extracted from a combination of NMR spectroscopy and computational chemistry. The assembly of o -phenylene decamers functionalized with alkoxy groups or hydrogens gives both [2 + 2] and [3 + 3] macrocycles. The mixture results from a subtle balance of entropic and enthalpic effects in these systems: the smaller [2 + 2] macrocycles are entropically favored but require the oligomer to misfold, whereas a perfectly folded decamer fits well within the larger [3 + 3] macrocycle that is entropically disfavored. Changing the substituents to fluoro groups, however, shifts assembly quantitatively to the [3 + 3] macrocycle products, even though the structural more » changes are well-removed from the functional groups directly participating in bond formation. The electron-withdrawing groups favor folding in these systems by strengthening arene–arene stacking interactions, increasing the enthalpic penalty to misfolding. The architectural changes are substantial even though the chemical perturbation is small: analogous o -phenylene octamers do not fit within macrocycles when perfectly folded, and quantitatively misfold to give small macrocycles regardless of substitution. Taken together, these results represent both a high level of structural control in structurally complex foldamer systems and the demonstration of large-amplitude structural changes as a consequence of a small structural effects. « less
Award ID(s):
Publication Date:
Journal Name:
Chemical Science
Page Range or eLocation-ID:
6992 to 7002
Sponsoring Org:
National Science Foundation
More Like this
  1. The conversion of macrocyclic 1,4-diketones to highly strained para-phenylene rings has recently been reported by our laboratory. This synthetic strategy represents a non-cross-coupling-based approach to arene-bridged macrocycles, and an alternative to palladium- and nickel-mediated processes. In this Synpacts article we discuss the development of endgame aromatization protocols for the synthesis of increasingly strained arene systems, as well as potential advantages of the macrocyclic 1,4-diketone approach to selectively functionalized benzenoid macrocycles for future complexity building reactions. 1 Introduction 2 A Non-Cross-Coupling-Based Approach to Arene-Bridged Macro cycles 3 Macrocyclic 1,4-Diketones: Streamlined Synthesis and Size-­Dependent Diastereoselective Grignard Reactions 4 Dehydrative Aromatization Reactions: Amore »Powerful Tool for Synthesizing Highly Strained para-Phenylene Units 5 Conclusion« less
  2. Both the small and large subunits of the ribosome, the molecular machine that synthesizes proteins, are complexes of ribosomal RNAs (rRNAs) and a number of proteins. In bacteria, the small subunit has a single 16S rRNA whose folding is the first step in its assembly. The central domain of the 16S rRNA folds independently, driven either by Mg2+ions or by interaction with ribosomal proteins. To provide a quantitative description of ion-induced folding of the ∼350-nucleotide rRNA, we carried out extensive coarse-grained molecular simulations spanning Mg2+concentration between 0 and 30 mM. The Mg2+dependence of the radius of gyration shows that globallymore »the rRNA folds cooperatively. Surprisingly, various structural elements order at different Mg2+concentrations, indicative of the heterogeneous assembly even within a single domain of the rRNA. Binding of Mg2+ions is highly specific, with successive ion condensation resulting in nucleation of tertiary structures. We also predict the Mg2+-dependent protection factors, measurable in hydroxyl radical footprinting experiments, which corroborate the specificity of Mg2+-induced folding. The simulations, which agree quantitatively with several experiments on the folding of a three-way junction, show that its folding is preceded by formation of other tertiary contacts in the central junction. Our work provides a starting point in simulating the early events in the assembly of the small subunit of the ribosome.

    « less
  3. In this paper, we show that the rigid-foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from the partition problem, and that rigid-foldability with optional creases is NP-hard by a reduction from the 1-in-3 SAT problem. Unlike flat-foldabilty of origami or flexibility of other kinematic linkages, whose complexity originates in the complexity of the layer ordering and possible self-intersection of the material, rigid foldabilltiy from a planar state is hard even though there is no potential self-intersection. In fact, the complexity comes from the combinatorial behavior of the different possible rigid folding configurations atmore »each vertex. The results underpin the fact that it is harder to fold from an unfolded sheet of paper than to unfold a folded state back to a plane, frequently encountered problem when realizing folding-based systems such as self-folding matters and reconfigurable robots.« less
  4. Small ribozymes such asOryza sativatwister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool toO. sativatwister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showedmore »that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+and Mn2+ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.

    « less
  5. Goldup, S (Ed.)
    Thermodynamically favored simultaneous coordination of Pt(II) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure–function relationships. Previous reports had claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M'TPP, M' = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M'TPP faces and four vertical XDC pillars connected by eight Pt(II) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly ofmore »cis-(Et3P)2PtII, M'TPP, and four different XDC linkers having varied lengths and rigidity actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M'TPP)(XDC)2]4+ complexes featuring a M'TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (~7–11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M'TPP core via PtII corners instead of connecting two cofacial M'TPP ligands and (ii) the bow-tie complexes are entropically more favored over prisms. The electron-rich ZnTPP core of a bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor like pyrene. Thus, this work not only produced novel M'TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure–property relationships.« less