Kidney exchange, where candidates with organ failure trade incompatible but willing donors, is a life-saving alternative to the deceased donor waitlist, which has inadequate supply to meet demand. While fielded kidney exchanges see huge benefit from altruistic kidney donors (who give an organ without a paired needy candidate), a significantly higher medical risk to the donor deters similar altruism with livers. In this paper, we begin by exploring the idea of large-scale liver exchange, and show on demographically accurate data that vetted kidney exchange algorithms can be adapted to clear such an exchange at the nationwide level. We then propose cross-organ donation where kidneys and livers can be bartered for each other. We show theoretically that this multi-organ exchange provides linearly more transplants than running separate kidney and liver exchanges. This linear gain is a product of altruistic kidney donors creating chains that thread through the liver pool; it exists even when only a small but constant portion of the donors on the kidney side of the pool are willing to donate a liver lobe. We support this result experimentally on demographically accurate multi-organ exchanges. We conclude with thoughts regarding the fielding of a nationwide liver or joint liver-kidney exchange from a legal and computational point of view. 
                        more » 
                        « less   
                    
                            
                            Equilibrium Allocations Under Alternative Waitlist Designs: Evidence From Deceased Donor Kidneys
                        
                    
    
            Waitlists are often used to ration scarce resources, but the trade‐offs in designing these mechanisms depend on agents' preferences. We study equilibrium allocations under alternative designs for the deceased donor kidney waitlist. We model the decision to accept an organ or wait for a preferable one as an optimal stopping problem and estimate preferences using administrative data from the New York City area. Our estimates show that while some kidney types are desirable for all patients, there is substantial match‐specific heterogeneity in values. We then develop methods to evaluate alternative mechanisms, comparing their effects on patient welfare to an equivalent change in donor supply. Past reforms to the kidney waitlist primarily resulted in redistribution, with similar welfare and organ discard rates to the benchmark first‐come, first‐served mechanism. These mechanisms and other commonly studied theoretical benchmarks remain far from optimal. We design a mechanism that increases patient welfare by the equivalent of an 18.2% increase in donor supply. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1729090
- PAR ID:
- 10252620
- Date Published:
- Journal Name:
- Econometrica
- Volume:
- 89
- Issue:
- 1
- ISSN:
- 0012-9682
- Page Range / eLocation ID:
- 37 to 76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Many scarce public resources are allocated through wait lists that use priorities for individual agents. A new priority system for allocating deceased donor kidneys was adopted in 2014. This redesign was guided by simulations that held decision-rules fixed. We synthesize recent theoretical results to show that the welfare effects of a mechanism depend on the interaction between dynamic incentives and heterogeneity in preferences. We show evidence suggesting that patient decisions on the deceased donor kidney wait list respond to dynamic incentives. Therefore, an empirical approach to dynamic mechanism design is an essential complement to mechanism design theory in dynamic environments.more » « less
- 
            Kidney exchanges allow patients with end-stage renal disease to find a lifesaving living donor by way of an organized market. However, not all patients are equally easy to match, nor are all donor organs of equal quality---some patients are matched within weeks, while others may wait for years with no match offers at all. We propose the first decision-support tool for kidney exchange that takes as input the biological features of a patient-donor pair, and returns (i) the probability of being matched prior to expiry, and (conditioned on a match outcome), (ii) the waiting time for and (iii) the organ quality of the matched transplant. This information may be used to inform medical and insurance decisions. We predict all quantities (i, ii, iii) exclusively from match records that are readily available in any kidney exchange using a quantile random forest approach. To evaluate our approach, we developed two state-of-the-art realistic simulators based on data from the United Network for Organ Sharing that sample from the training and test distribution for these learning tasks---in our application these distributions are distinct. We analyze distributional shift through a theoretical lens, and show that the two distributions converge as the kidney exchange nears steady-state. We then show that our approach produces clinically-promising estimates using simulated data. Finally, we show how our approach, in conjunction with tools from the model explainability literature, can be used to calibrate and detect bias in matching policies.more » « less
- 
            Transplantation provides patients suffering from end-stage kidney disease a better quality of life and long-term survival. However, over 20% of deceased donor kidneys are not utilized and never transplanted. While this is sometimes medically appropriate, this also reflects missed opportunities. We are designing Artificial Intelligence decision support for the kidney offer process to support both demand at the transplant center and supply at the organ procurement organization. This includes (1) developing deep learning models, (2) evaluating the effect of explainable interfaces, (3) improving fairness in the model output, (4) identifying factors that influence adoption decisions, and (5) conducting a randomized control trial using an ecologically valid and realistic simulation platform for behavioral experiments, to estimate the impact on kidney utilization.more » « less
- 
            While the mechanism design paradigm emphasizes notions of efficiency based on agent preferences, policymakers often focus on alternative objectives. School districts emphasize educational achievement, and transplantation communities focus on patient survival. It is unclear whether choice‐based mechanisms perform well when assessed based on these outcomes. This paper evaluates the assignment mechanism for allocating deceased donor kidneys on the basis of patient life‐years from transplantation (LYFT). We examine the role of choice in increasing LYFT and compare realized assignments to benchmarks that remove choice. Our model combines choices and outcomes in order to study how selection affects LYFT. We show how to identify and estimate the model using instruments derived from the mechanism. The estimates suggest that the design in use selects patients with better post‐transplant survival prospects and matches them well, resulting in an average LYFT of 9.29, which is 1.75 years more than a random assignment. However, the maximum aggregate LYFT is 14.08. Realizing the majority of the gains requires transplanting relatively healthy patients, who would have longer life expectancies even without a transplant. Therefore, a policymaker faces a dilemma between transplanting patients who are sicker and those for whom life will be extended the longest.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    