skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growing TTULPs Through Your Lessons
All students have strengths, which can be leveraged through universally designed instruction. We share a lesson planning tool, called the Thinking Through Universal Lesson Protocol (TTULP), that teachers used to create and enact mathematics lessons that support students with and without learning disabilities.  more » « less
Award ID(s):
1720646
PAR ID:
10252694
Author(s) / Creator(s):
; ;
Editor(s):
Barlow, A.
Date Published:
Journal Name:
Mathematics teaching and learning
Volume:
114
Issue:
7
ISSN:
2589-6016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Remote access technology in STEM education fills dual roles as an educational tool to deliver science education (Educational Technology) and as a means to teach about technology itself (Technology Education). A five-lesson sequence was introduced to 11 and 12-year-old students at an urban school. The lesson sequences were inquiry-based, hands-on, and utilized active learning pedagogies, which have been implemented in STEM classrooms worldwide. Each lesson employed a scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) accessed remotely. Students were assessed using multiple-choice questions to ascertain (1) technology education learning gains: did students gain an understanding of how electron microscopes work? and (2) educational technology learning gains: did students gain a better understanding of lesson content through use of the electron microscope? Likert-item surveys were developed, distributed, and analyzed to established how remote access technology affected student attitudes toward science, college, and technology. Participating students had a positive increase in attitudes toward scientific technology by engaging in the lesson sequences, reported positive attitudes toward remote access experiences, and exhibited learning gains in the science behind the SEM technology they accessed remotely. These findings suggest that remote experiences are a strong form of technology education, but also that future research could explore ways to strengthen remote access as an educational technology (a tool to deliver lesson content), such as one-on-one engagement. This study promotes future research into inquiry-based, hands-on, integrated lessons approach that utilize educational technology learning through remote instruments as a pedagogy to increase students’ engagement with and learning of the T in STEM. 
    more » « less
  2. When conducting a science investigation in biology, chemistry, physics or earth science, students often need to obtain, organize, clean, and analyze the data in order to draw conclusions about a particular phenomenon. It can be difficult to develop lesson plans that provide detailed or explicit instructions about what students need to think about and do to develop a firm conceptual understanding, particularly regarding data analysis. This article demonstrates how computational thinking principles and data practices can be merged to develop more effective science investigation lesson plans. The data practices of creating, collecting, manipulating, visualizing, and analyzing data are merged with the computational thinking practices of decomposition, pattern recognition, abstraction, algorithmic thinking, and automation to create questions for teachers and students that help them think through the underlying processes that happen with data during high school science investigations. The questions can either be used to elaborate lesson plans or embedded into lesson plans for students to consider how they are using computational thinking during their data practices in science. 
    more » « less
  3. Computational Thinking (CT) is being infused into curricula in a variety of core K-12 STEM courses. As these topics are being introduced to students without prior programming experience and are potentially taught by instructors unfamiliar with programming and CT, appropriate lesson design might help support both students and teachers. “Use-Modify-Create" (UMC), a CT lesson progression, has students ease into CT topics by first “Using" a given artifact, “Modifying" an existing one, and then eventually “Creating" new ones. While studies have presented lessons adopting and adapting this progression and advocating for its use, few have focused on evaluating UMC’s pedagogical effectiveness and claims. We present a comparison study between two CT lesson progressions for middle school science classes. Students participated in a 4-day activity focused on developing an agent-based simulation in a block-based programming environment. While some classrooms had students develop code on days 2-4, others used a scaffolded lesson plan modeled after the UMC framework. Through analyzing student’s exit tickets, classroom observations, and teacher interviews, we illustrate differences in perception of assignment difficulty from both the students and teachers, as well as student perception of artifact “ownership" between conditions. 
    more » « less
  4. In the Earth sciences, weathering encompasses all the physical, chemical, and biological processes that break down rocks in place. Rock weathering takes decades to millions of years and impacts climate and soil formation. In our two-part lesson, students develop an understanding of weathering and how it can influence climate and human society through hands-on experiments. Lesson 1 focuses on how rock weathering impacts climate; students investigate how changing the temperature and acidity of weathering agents affects the rate of rock weathering. Lesson 2 focuses on how weathering impacts human society; students perform experiments simulating weathering of mudstone and granite via shaking rocks in containers; students observe that these rocks weather at different rates and produce different-sized particles because of physical weathering. Students relate their experimental observations to the process of soil formation and then apply this knowledge to societally relevant topics. These lessons bring rock weathering into the classroom with crosscutting concepts and connect the Earth, climate, and human society together in an interactive way. 
    more » « less
  5. Abstract Students lose interest in science as they progress from elementary to high school. There is a need for authentic, place‐based science learning experiences that can increase students' interest in science. Scientists have unique skillsets that can complement the work of educators to create exciting experiences that are grounded in pedagogy and science practices. As scientists and educators, we co‐developed a lesson plan for high school students on the Eastern Shore of Virginia, a historically underserved coastal area, that demonstrated realistic scientific practices in students' local estuaries. After implementation of the lesson plan, we observed that students had a deeper understanding of ecosystem processes compared to their peers who had not been involved, were enthusiastic about sharing their experiences, and had a more well‐rounded ability to think like a scientist than before the lesson plan. We share our experiences and five best practices that can serve as a framework for scientists and educators who are motivated to do similar work. Through collaboration, scientists and educators have the potential to bolster student science identities and increase student participation in future scientific endeavors. 
    more » « less