We present a sample- and time-efficient differentially private algorithm for ordinary least squares, with error that depends linearly on the dimension and is independent of the condition number of X⊤X, where X is the design matrix. All prior private algorithms for this task require either d3/2 examples, error growing polynomially with the condition number, or exponential time. Our near-optimal accuracy guarantee holds for any dataset with bounded statistical leverage and bounded residuals. Technically, we build on the approach of Brown et al. (2023) for private mean estimation, adding scaled noise to a carefully designed stable nonprivate estimator of the empirical regression vector.
more »
« less
Permute-and-Flip: A new mechanism for differentially private selection
We consider the problem of differentially private selection. Given a finite set of candidate items, and a quality score for each item, our goal is to design a differentially private mechanism that returns an item with a score that is as high as possible. The most commonly used mechanism for this task is the exponential mechanism. In this work, we propose a new mechanism for this task based on a careful analysis of the privacy constraints. The expected score of our mechanism is always at least as large as the exponential mechanism, and can offer improvements up to a factor of two. Our mechanism is simple to implement and runs in linear time.
more »
« less
- Award ID(s):
- 1749854
- PAR ID:
- 10252718
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Various differentially private algorithms instantiate the exponential mechanism, and require sampling from the distribution exp(−f) for a suitable function f. When the domain of the distribution is high-dimensional, this sampling can be challenging. Using heuristic sampling schemes such as Gibbs sampling does not necessarily lead to provable privacy. When f is convex, techniques from log-concave sampling lead to polynomial-time algorithms, albeit with large polynomials. Langevin dynamics-based algorithms offer much faster alternatives under some distance measures such as statistical distance. In this work, we establish rapid convergence for these algorithms under distance measures more suitable for differential privacy. For smooth, strongly-convex f, we give the first results proving convergence in R\'enyi divergence. This gives us fast differentially private algorithms for such f. Our techniques and simple and generic and apply also to underdamped Langevin dynamics.more » « less
-
We investigate the problem of designing differentially private (DP), revenue- maximizing single item auction. Specifically, we consider broadly applicable settings in mechanism design where agents’ valuation distributions are indepen- dent, non-identical, and can be either bounded or unbounded. Our goal is to design such auctions with pure, i.e., (ω, 0) privacy in polynomial time.more » « less
-
null (Ed.)Differential privacy has been widely adopted to release continuous- and scalar-valued information on a database without compromising the privacy of individual data records in it. The problem of querying binary- and matrix-valued information on a database in a differentially private manner has rarely been studied. However, binary- and matrix-valued data are ubiquitous in real-world applications, whose privacy concerns may arise under a variety of circumstances. In this paper, we devise an exclusive or (XOR) mechanism that perturbs binary- and matrix-valued query result by conducting an XOR operation on the query result with calibrated noises attributed to a matrix-valued Bernoulli distribution. We first rigorously analyze the privacy and utility guarantee of the proposed XOR mechanism. Then, to generate the parameters in the matrix-valued Bernoulli distribution, we develop a heuristic approach to minimize the expected square query error rate under ϵ -differential privacy constraint. Additionally, to address the intractability of calculating the probability density function (PDF) of this distribution and efficiently generate samples from it, we adapt an Exact Hamiltonian Monte Carlo based sampling scheme. Finally, we experimentally demonstrate the efficacy of the XOR mechanism by considering binary data classification and social network analysis, all in a differentially private manner. Experiment results show that the XOR mechanism notably outperforms other state-of-the-art differentially private methods in terms of utility (such as classification accuracy and F 1 score), and even achieves comparable utility to the non-private mechanisms.more » « less
-
We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of real-arithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-time algorithms. As a case study, we examine the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe X. The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy \& Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in |X|, which can be exponential in the bit length of the input. In this paper, we provide strict polynomial-time discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its ``"per-bin accuracy" (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of log|X|, but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an (n+1)-wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism.more » « less
An official website of the United States government

