skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flow Field Analysis Around Pressure Shielding Structures
The flow field around a series of streamwise rods, referred to as canopies, is investigated using two-dimensional two-component time-resolved particle image velocimetry (PIV) and large eddy simulations (LES) to characterize the changes in the flow field responsible for reducing the low and high-frequency surface pressure fluctuations previously observed. It was found that an axisymmetric turbulent boundary layer (ATBL) develops over the rods, whose thickness grows at a greater rate above the rods than below. This boundary layer reaches the wall below the rods at a point where previously a saturation was found in the low-frequency noise attenuation, revealing that the ATBL is responsible for the low- frequency noise attenuation. The flow is displaced by the presence of the rods, particularly above them, which offset was primarily caused by the blockage of the ATBL. The flow below the rods exhibits the properties of a turbulent boundary layer as its profile still conforms to the logarithmic layer, but the friction velocity was found to drop. This viscous effect was found to be responsible for the high-frequency noise attenuation reported previously.  more » « less
Award ID(s):
1802915
PAR ID:
10252769
Author(s) / Creator(s):
Date Published:
Journal Name:
AIAA Aviation 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shear sheltering is defined as the effect of the mean flow velocity profile in a boundary layer on the turbulence caused by an imposed gust. It has been studied extensively in applications involving boundary layer transition, where the primary concern is flow instabilities that are enhanced by turbulence in the flow outside the boundary layer. In aeroacoustic applications turbulent boundary layers interacting with blade trailing edges or roughness elements are an important source of sound, and the effect of shear sheltering on these noise sources has not been studied in detail. Since the surface pressure spectrum below the boundary layer is the primary driver of trailing edge and roughness noise, we will consider the effect that shear sheltering has on the surface pressure spectrum below a boundary layer. We will model the incoming turbulence as vortex sheets at specified heights above the surface and show, using classical boundary layer profiles and approximations to numerical results, how the mean flow velocity can be manipulated to alter the surface pressure spectrum and hence the radiated trailing edge noise. 
    more » « less
  2. null (Ed.)
    An analytical approach has been developed to model the rapid term contribution to the unsteady surface pressure fluctuations in wall jet turbulent boundary layer flows. The formulation is based on solving Poisson’s equation for the turbulent wall pressure by integrating the source terms (Kraichnan, 1956). The inputs for the model are obtained from 2D time-resolved Particle Image Velocimetry measurements performed in a wall jet flow. The wall normal turbulence wavenumber two-point cross-spectra is determined using an extension of the von Kármán homogeneous turbulence spectrum. The model is applied to compare and understand the baseline flow in the wall jet and to study the attenuation in surface pressure fluctuations by unidirectional canopies (Gonzales et al, 2019). Different lengthscale formulations are tested and we observe that the wall jet flow boundary layer contributes to the surface pressure fluctuations from two distinct regions. The high frequency spectrum is captured well. However, the low frequency range of the spectrum is not entirely captured. This is because we have used PIV data only up to a height of 2.3𝜹, whereas the largest turbulent lengthscales in the wall jet are on the order of 𝒚𝟏/𝟐≈𝟔𝜹. Using the flow data obtained from PIV and Pitot probe measurements, the model predicts a reduction in the surface pressure due to canopy at low frequencies. 
    more » « less
  3. Flow separation caused by steep topography remains a significant obstacle in accurately predicting turbulent boundary-layer flows over complex terrain, despite the utilization of sophisticated numerical models. The addition of atmospheric thermal stability, in conjunction with steep topography, further complicates the determination of disrupted turbulent wind patterns. The turbulent separated flows over a two-dimensional (2D) steep hill under thermal stratification has not been extensively addressed in previous experimental studies. Such measurements are crucial for enhancing our comprehension of flow physics and validating numerical models. We measured the turbulent wind flows over a 2D steep hill immersed in a stable boundary layer (of the bulk Richardson Number = 0.256) in a thermally-stratified boundary-layer wind tunnel. The flow separation, re-circulation zone and flow reattachment were characterized by the planar particle image velocimetry technique. Vertical profiles of mean air temperature and its fluctuations are also quantified at representative locations above the 2D steep hill and in the near wake region. Results indicate that the separated shear layer, initiated near the crest of the 2D steep hill, dominates the physical process leading to high turbulence levels and the turbulent kinetic energy production in the wake region for both stable and neutral thermal stability. Although the stable boundary layer does not dramatically change the turbulent flow pattern around the hill, the mean separation bubble is elongated by 13%, and its vertical extent is decreased by approximately 20%. Furthermore, the reduced turbulence intensities and turbulent kinetic energy of the near wake flow are attributed to the relatively low turbulence intensity and low momentum of the stable boundary layer due to buoyancy damping, compared to the neutral boundary layer. Additionally, a distinct low-temperature region—a cold pool—is extended beyond the separation bubble, reflecting the significant sheltering effect of the 2D steep hill on the downwind flow and temperature field. 
    more » « less
  4. An experimental study investigates parametrically the effects of porosity on the acoustic and aerodynamic fields about lifting- and non-lifting surfaces at two separate aeroacoustic facilities using microphone arrays and hot-wire anemometry. A single dimensionless porosity parameter characterizes the flow noise generated by a turbulent boundary layer and informs the design of the porous edge test specimens, including perforated flat plates and flat-plate extensions with a blunt or sharp trailing edge. The strong tonal peak due to vortex shedding from blunt trailing-edges diminishes in magnitude as the porosity parameter increases, and high-porosity plates eliminate this tone from the acoustic spectra. Single-microphone measurements indicate further that the porous plates examined can reduce low-frequency noise and increase high-frequency excess noise levels by up to 10 dB. DAMAS beamforming of the porous plates with sharpened edges reveal similar results on the acoustic spectra and identify that the principal effect of edge porosity on the acoustic source regions is a reduction in low-frequency noise and an increase in high-frequency noise across the entire plate. Noise generated by porous edges in the low-frequency range by the trailing- and leading-edge regions can be reduced by up to 20 dB, and porous edges increase high-frequency noise by up to 20 dB. Plates with the same dimensionless porosity perform similarly, where plates with circular holes perform slightly better (2 dB) than their counterparts with square holes at reducing low-frequency noise the most and increasing high-frequency noise the least in wind tunnel testing. Hot-wire anemometry of the flow field about blunt porous trailing edges reveals a downward shift of the bluntness-induced vortex-shedding peak in the spectra of turbulent velocity fluctuations, which are not seen in the acoustic spectra. In addition, flow field measurements for both the blunt-edged and sharp-edge plates indicate significant increases in turbulence intensity at the plate surface which are believed to be caused by the presence of holes and related to the increase in noise seen at high frequencies. The wing of a remote-controlled glider is modified with porous plates near the trailing edge to demonstrate reductions in surface pressure level fluctuations on a flying vehicle at the owl scale. Measurements of these fluctuations on the wing and fuselage indicate the capacity of porous plates to modestly reduce surface pressure levels in select frequency ranges and settings of aerial vehicles. 
    more » « less
  5. Previous studies have demonstrated that structures such as a canopy or finlets placed within a boundary layer over an aerodynamic surface can attenuate pressure fluctuations on the surface without compromising aerodynamic performance. This paper describes research into the fundamental mechanisms of this pressure shielding. Experiments and analysis are performed on elemental canopy configurations (parallel arrays of streamwise rods) that eliminate the confounding effects of a leading-edge support structure. Experiments show that such a canopy produces attenuation in two distinct frequency ranges. At low frequencies (convective scales much greater than the canopy height) attenuation spectra scale on the canopy height Strouhal number, but at high frequencies (canopy scales of the order of the height) a dissipation type frequency scaling appears more appropriate. RANS calculations are performed simulating the canopy geometry directly and as a porous layer. Pressure fluctuation spectra predicted from the RANS results by separately accounting for inner and outer layer contributions are able to accurately recreate the wall pressure spectra both with and without the canopy and thus the major features of the attenuation spectra. 
    more » « less