skip to main content

Title: Intra‐specific variation in migration phenology of American Kestrels ( Falco sparverius ) in response to spring temperatures
Abstract In migratory birds, among- and within-species heterogeneity in response to climate change may be attributed to differences in migration distance and environmental cues that affect timing of arrival at breeding grounds. We used eBird observations and a within-species comparative approach to examine whether migration distance (with latitude as a proxy) and weather predictors can explain spring arrival dates at the breeding site in a raptor species with a widespread distribution and diverse migration strategies, the American Kestrel Falco sparverius. We found an interactive effect between latitude and spring minimum temperatures on arrival dates, whereby at lower latitudes (short-distance migrants) American Kestrels arrived earlier in warmer springs and later in colder springs, but American Kestrels at higher latitudes (long-distance migrants) showed no association between arrival time and spring temperatures. Increased snow cover delayed arrival at all latitudes. Our results support the hypothesis that short-distance migrants are better able to respond to conditions on the breeding ground than are long-distance migrants, suggesting that long-distance migrants may be more vulnerable to shifts in spring conditions that could lead to phenological mismatch between peak resources and nesting.
Authors:
; ; ;
Award ID(s):
1757324
Publication Date:
NSF-PAR ID:
10252783
Journal Name:
Ibis
ISSN:
0019-1019
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Migratory birds have the capacity to shift their migration phenology in response to climatic change. Yet the mechanistic underpinning of changes in migratory timing remain poorly understood. We employed newly developed global positioning system (GPS) tracking devices and long-term dataset of migration passage timing to investigate how behavioral responses to environmental conditions relate to phenological shifts in American robins (Turdus migratorius) during spring migration to Arctic-boreal breeding grounds. We found that over the past quarter-century (1994–2018), robins have migrated ca. 5 d/decade earlier. Based on GPS data collected for 55 robins over three springs (2016–2018), we found the arrivalmore »timing and likelihood of stopovers, and timing of arrival to breeding grounds, were strongly influenced by dynamics in snow conditions along migratory paths. These findings suggest plasticity in migratory behavior may be an important mechanism for how long-distance migrants adjust their breeding phenology to keep pace with advancement of spring on breeding grounds.

    « less
  2. Warming temperatures have been linked to advancing spring migration dates of birds, although most studies have been conducted at individual sites. Problems may arise if birds arrive or depart before or after associated food resources reach critical lifecycle stages. I compared mean first arrival dates of Rufous Hummingbird (Selaphorus rufus), a prolific pollinator and long-distance migrant, between 1895-1969 and 2006-2015 at eight locations in Oregon, Washington, and British Columbia. Historical arrivals were reported through the North American Bird Phenology Program and recent arrivals were estimated from temporal occupancy patterns using eBird checklists. Results indicated that hummingbirds arrived 8 and 11more »days later in the recent time period in two coastal cities in Oregon and 7-17 days earlier in northern, more inland cities in Washington and British Columbia. Spring temperatures have increased in the past century in much of this region and birds arrived earlier in years with warmer spring temperatures, suggesting that migratory advancements were climate-related. Later arrivals reported in coastal regions of Oregon in the recent time period may suggest that Rufous Hummingbirds are bypassing coastal areas to take advantage of more predictable conditions along inland migratory routes, or are shifting their breeding ranges northward, notions both supported by declining population trends observed in Breeding Bird Survey data. My results provide justification for the investigation of the ecological impacts of climate change on birds in coastal vs. inland environments and a framework for comparing information from two extensive and emerging datasets to better understand the impacts of climate change on bird migration.« less
  3. Migratory bird populations frequently consist of individuals that overwinter variable distances from the breeding site. Seasonal changes in photoperiod, which varies with latitude, underlie seasonal changes in singing frequency in birds. Therefore, migratory populations that consist of individuals that overwinter at different latitudes with large overwintering ranges could experience within-population variation in seasonal production of song. To test the influence of overwintering latitude on intrapopulation variance in song production in the spring, we subjected two groups of Eastern Song Sparrows (Melospiza melodia melodia) from the same partially migratory breeding population to different photoperiodic schedules associated with a 1,300-km difference inmore »overwintering location. One group remained on the natural photoperiodic schedule of the breeding site (resident group) while the other group experienced a nonbreeding photoperiod that mimicked a southern migration in the fall followed by a northern migration back to the breeding site in the spring (migratory group). We compared song output between the two groups in three different stages (nonbreeding, prebreeding, and breeding). Little singing occurred during nonbreeding stage sample dates (20 November, 6 December) for the resident group, and no singing occurred for the migrant group. During the prebreeding stage (27 January, 7 February), significantly more singing occurred in the resident group than in the migrant group. During the breeding stage (21 March, 4 April), after a simulated migration for the migrants, song output was similar in both groups. These results suggest that within-population variation in wintering latitude may contribute to variation in seasonal changes in singing behavior, which may covary with readiness to breed. Studies utilizing confirmed migrants and residents, rather than merely simulated migrants and residents, are also needed to better understand these processes.« less
  4. Animals and plants are shifting the timing of key life events in response to climate change, yet despite recent documentation of escalating phenological change, scientists lack a full understanding of how and why phenological responses vary across space and among species. Here, we used over 7 million community-contributed bird observations to derive species-specific, spatially explicit estimates of annual spring migration phenology for 56 bird species across eastern North America. We show that changes in the spring arrival of migratory birds are coarsely synchronized with fluctuations in vegetation green-up and that the sensitivity of birds to plant phenology varied extensively. Bird arrivalmore »responded more synchronously with vegetation green-up at higher latitudes, where phenological shifts over time are also greater. Critically, species’ migratory traits explained variation in sensitivity to green-up, with species that migrate more slowly, arrive earlier and overwinter further north showing greater responsiveness to earlier springs. Identifying how and why species vary in their ability to shift phenological events is fundamental to predicting species’ vulnerability to climate change. Such variation in sensitivity across taxa, with long-distance neotropical migrants exhibiting reduced synchrony, may help to explain substantial declines in these species over the last several decades.« less
  5. Physiological preparations for migration generally reflect migratory strategy. Migrant birds fuel long-distance flight primarily with lipids, but carrying excess fuel is costly; thus, the amount of fat deposited prior to departure often reflects the anticipated flight duration or distance between refueling bouts. Seasonal pre-migratory deposition of fat is well documented in regular seasonal migrants, but is less described for more facultative species. We analyze fat deposits of free-living birds across several taxa of facultative migrants in the songbird subfamily Carduelinae, including house finches ( Haemorhous mexicanus ), American goldfinches ( Spinus tristis ), pine siskins ( Spinus pinus ) andmore »four different North American ecotypes of red crossbills ( Loxia curvirostra ), to evaluate seasonal fat deposition during facultative migratory periods. Our data suggest that the extent of seasonal fat deposits corresponds with migratory tendency in these facultative taxa. Specifically, nomadic red crossbills with a seasonally predictable annual movement demonstrated relatively large seasonal fat deposits coincident with the migratory periods. In contrast, pine siskins, thought to be more variable in timing and initiation of nomadic movements, had smaller peaks in fat deposits during the migratory season, and the partial migrant American goldfinch and the resident house finch showed no peaks coincident with migratory periods. Within the red crossbills, those ecotypes that are closely associated with pine habitats showed larger peaks in fat deposits coincident with autumn migratory periods and had higher wing loading, whereas those ecotypes associated with spruces, Douglas-fir and hemlocks showed larger peaks coincident with spring migratory periods and lower wing loading. We conclude that population averages of fat deposits do reflect facultative migration strategies in these species, as well as the winter thermogenic challenges at the study locations. A difference in seasonal fattening and wing loading among red crossbill ecotypes is consistent with the possibility that they differ in their migratory biology, and we discuss these differences in light of crossbill reproductive schedules and phenologies of different conifer species.« less