Migratory birds have the capacity to shift their migration phenology in response to climatic change. Yet the mechanistic underpinning of changes in migratory timing remain poorly understood. We employed newly developed global positioning system (GPS) tracking devices and long-term dataset of migration passage timing to investigate how behavioral responses to environmental conditions relate to phenological shifts in American robins (
- Publication Date:
- NSF-PAR ID:
- 10302755
- Journal Name:
- Environmental Research Letters
- Volume:
- 15
- Issue:
- 4
- Page Range or eLocation-ID:
- Article No. 045003
- ISSN:
- 1748-9326
- Publisher:
- IOP Publishing
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract In migratory birds, among- and within-species heterogeneity in response to climate change may be attributed to differences in migration distance and environmental cues that affect timing of arrival at breeding grounds. We used eBird observations and a within-species comparative approach to examine whether migration distance (with latitude as a proxy) and weather predictors can explain spring arrival dates at the breeding site in a raptor species with a widespread distribution and diverse migration strategies, the American Kestrel Falco sparverius. We found an interactive effect between latitude and spring minimum temperatures on arrival dates, whereby at lower latitudes (short-distance migrants)more »
-
In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (
Tachycineta bicolor ). By examining breedingmore » -
Animals and plants are shifting the timing of key life events in response to climate change, yet despite recent documentation of escalating phenological change, scientists lack a full understanding of how and why phenological responses vary across space and among species. Here, we used over 7 million community-contributed bird observations to derive species-specific, spatially explicit estimates of annual spring migration phenology for 56 bird species across eastern North America. We show that changes in the spring arrival of migratory birds are coarsely synchronized with fluctuations in vegetation green-up and that the sensitivity of birds to plant phenology varied extensively. Bird arrivalmore »
-
Warming temperatures have been linked to advancing spring migration dates of birds, although most studies have been conducted at individual sites. Problems may arise if birds arrive or depart before or after associated food resources reach critical lifecycle stages. I compared mean first arrival dates of Rufous Hummingbird (Selaphorus rufus), a prolific pollinator and long-distance migrant, between 1895-1969 and 2006-2015 at eight locations in Oregon, Washington, and British Columbia. Historical arrivals were reported through the North American Bird Phenology Program and recent arrivals were estimated from temporal occupancy patterns using eBird checklists. Results indicated that hummingbirds arrived 8 and 11more »
-
Monarch butterflies in eastern North America have declined by 84% on Mexican wintering grounds since the observed peak in 1996. However, coarse-scale population indices from northern US breeding grounds do not show a consistent downward trend. This discrepancy has led to speculation that autumn migration may be a critical limiting period. We address this hypothesis by examining the role of multiscale processes impacting monarchs during autumn, assessed using arrival abundances at all known winter colony sites over a 12-y period (2004–2015). We quantified effects of continental-scale (climate, landscape greenness, and disease) and local-scale (colony habitat quality) drivers of spatiotemporal trendsmore »