skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals
Self-assembly of anisotropic nanomaterials into fluids is a key step in producing bulk, solid materials with controlled architecture and properties. In particular, the ordering of anisotropic nanomaterials in lyotropic liquid crystalline phases facilitates the production of films, fibers, and devices with anisotropic mechanical, thermal, electrical, and photonic properties. While often considered a new area of research, experimental and theoretical studies of nanoscale mesogens date back to the 1920s. Through modern computational, synthesis, and characterization tools, there are new opportunities to design liquid crystalline phases to achieve complex architectures and enable new applications in opto-electronics, multifunctional textiles, and conductive films. This review article provides a brief review of the liquid crystal phase behavior of one dimensional nanocylinders and two dimensional nanoplatelets, a discussion of investigations on the effects of size and shape dispersity on phase behavior, and outlook for exploiting size and shape dispersity in designing materials with controlled architectures.  more » « less
Award ID(s):
2005413
PAR ID:
10252930
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Crystals
Volume:
10
Issue:
8
ISSN:
2073-4352
Page Range / eLocation ID:
715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The size and shape of polymer materials is becoming an increasingly important property in accessing new functions and applications of nano‐/microparticles in many scientific fields. New synthetic methods have allowed unprecedented capability for the facile fabrication of anisotropic and shape‐defined nanomaterials. Bottom‐up approaches including: emulsion polymerization techniques, amphiphile self‐assembly, and polymerization‐induced self‐assembly, can lead to polymer particles with precise dimensions in the nanoscale. Top‐down methods such as lithographic templating, and 3D printing, have increased the access to unique particle shapes. In this review, these recent developments are appraised and contrasted, with future research directions providing that focus on biomedical applications. Finally, the opportunity available for synergistic combinations of top‐down and bottom‐up fabrication approaches in realizing previously unattainable architectures and material properties is highlighted. 
    more » « less
  2. We report computer simulations of two-dimensional convex hard superellipse particle phases vs. particle shape parameters including aspect ratio, corner curvature, and sidewall curvature. Shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, as well as shapes with non-uniform curvature including rounded squares, rounded rectangles, and rounded rhombuses. Using measures of orientational order, order parameters, and a novel stretched bond orientational order parameter, we systematically identify particle shape properties that determine liquid crystal and crystalline phases including their coarse boundaries and symmetry. We observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and hexagonal crystals (including stretched variants). Our results catalog known benchmark shapes, but include new shapes that also interpolate between known shapes. Our results indicate design rules for particle shapes that determine two-dimensional liquid, liquid crystalline, and crystalline microstructures that can be realized via particle assembly. 
    more » « less
  3. To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur in the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current. 
    more » « less
  4. Hydrogels which morph between programmed shapes in response to aqueous stimuli are of significant interest for biosensors and artificial muscles, among other applications. However, programming hydrogel shape change at small size scales is a significant challenge. Here we use the inherent ordering capabilities of liquid crystals to create a mechanically anisotropic hydrogel; when coupled with responsive comonomers, the mechanical anisotropy in the network guides shape change in response to the desired aqueous condition. Our synthetic strategy hinges on the use of a methacrylic chromonic liquid crystal monomer which can be combined with a non-polymerizable chromonic of similar structure to vary the magnitude of shape change while retaining liquid crystalline order. This shape change is directional due to the mechanical anisotropy of the gel, which is up to 50% stiffer along the chromonic stack direction than perpendicular. Additionally, we show that the type of stimulus to which these anisotropic gels respond can be switched by incorporating responsive, hydrophilic comonomers without destroying the nematic phase or alignment. The utility of these properties is demonstrated in polymerized microstructures which exhibit Gaussian curvature in response to high pH due to emergent ordering in a micron-sized capillary. 
    more » « less
  5. Abstract Dynamic liquid crystalline polymers (dLCPs) incorporate both liquid crystalline mesogens and dynamic bonds into a single polymeric material. These dual functionalities impart order‐dependent thermo‐responsive mechano‐optical properties and enhanced reprocessability/programmability enabling their use as soft actuators, adaptive adhesives, and damping materials. While many previous works studying dynamic LCPs utilize dynamic covalent bonds, metallosupramolecular bonds provide a modular platform where a series of materials can be accessed from a single polymeric feedstock through the variation of the metal ion used. A series of dLCPs were prepared by the addition of metal salts to a telechelic 2,6‐bisbenzimidazolylpyridine (Bip) ligand endcapped LCP to form metallosupramolecular liquid crystal polymers (MSLCPs). The resulting MSLCPs were found to phase separate into hard and soft phases which aids in their mechanical robustness. Variations of the metal salts used to access these materials allowed for control of the thermomechanical, viscoelastic, and adhesive properties with relaxations that can be tailored independently of the mesogenic transition. This work demonstrates that by accessing phase separation through the incorporation of metallosupramolecular moieties, highly processable yet robust MSLCP materials can be realized. This class of materials opens the door to LCPs with bulk flow behavior that can also be utilized as multi‐level adhesives. 
    more » « less