skip to main content

Title: Characterization and Performance of Cement-based Thermoelectric Materials
Thermoelectric materials enable the direct conversion of thermal energy to electricity. Ambient heat energy harvesting could be an effective route to convert buildings from being energy consumers to energy harvesters, thus making them more sustainable. There exists a relatively stable temperature gradient (storing energy) between the internal and external walls of buildings which can be utilized to generate meaningful energy (that is, electricity) using the thermoelectric principle. This could ultimately help reduce the surface temperatures and energy consumption of buildings, especially in urban areas. In this paper, ongoing work on developing and characterizing a cement-based thermoelectric material is presented. Samples are fabricated using cement as a base material and different metal oxides (Bi₂O₃ and Fe₂O₃) are added to enhance their thermoelectric properties. A series of characterization tests are undertaken on the prepared samples to determine their Seebeck coefficient, electrical and thermal conductivity. The study shows that cement paste with additives possesses physical properties in the range of semiconductors whereby, initially, the resistivity values are low but with time, they increase gradually, thus resulting in lower electrical conductivity. The thermal conductivity of the cement paste with additives is lower than the control sample. Seebeck coefficient values were found to be relatively more » unstable during the initial set of measurements because the internal and external environment needed to be kept in a thermally stable condition to achieve steady results. The detailed analysis helped determine and eliminate the source of errors in the characterization process and obtain repeatable results. Parameters such as moisture content, temperature, and age were found to have a significant impact on the properties of cement-based thermoelectric materials. « less
Award ID(s):
Publication Date:
Journal Name:
Civil Engineering Research in Ireland (CERI) 2020
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermoelectric (TE) cement composite is a new type of TE material. Unlike ordinary cement, due to the inclusion of additives, TE cement can mutually transform thermal energy into electrical energy. In extreme weather, the large temperature difference between indoor and outdoor can be harvested by TE cement to generate electricity. In moderate weather, given power input, the same material can provide cooling/heating to adjust room temperature and reduce HAVC load. Therefore, TE cement has energy-saving potential in the application of building enclosures and energy systems. Its ability to convert different forms of energy and use low-grade energy is conducive tomore »the operation of net-zero buildings. In this study, the graphene nanoplatelets and aluminum-doped zinc oxide nanopowder enhanced cement composite, was fabricated. The performance indicator of TE materials includes the dimensionless figure of merit ZT, calculated by Seebeck coefficient, thermal conductivity, and electrical conductivity. These TE properties were measured and calculated by a Physical Property Measurement System at different temperatures. The highest ZT of 15wt.% graphene and 5wt.% AZO enhanced cement composite prepared by the dry method is about 5.93E-5 at 330K.« less
  2. Thermoelectric (TE) cement composite is a new type of TE material. Unlike ordinary cement, TE cement can mutually convert thermal energy to electrical energy due to the addition of carbon fibers, metal oxide nanoparticles, etc. In hot summer or cold winter, the significant temperature difference between indoor and outdoor can be used by TE cement to generate electricity. On the other hand, given power input, the same material can provide cooling/ heating to adjust room temperature. Therefore, TE cement has certain energy-saving potential in the application of building enclosures and energy systems. Its ability to convert different forms of energymore »and use low-grade energy is conducive to the operation of net-zero buildings. In this study, a novel TE cement composite, MnO2 and graphite enhanced cement, was firstly fabricated. The surface morphology of the composites was analyzed by using the images taken by scanning electron microscopy. The performance indicators of TE materials include the power factor and dimensionless figure of merit ZT The values of five TE properties were measured and calculated by a Physical Property Measurement System at different temperatures. Compared with the cement reinforced by graphite alone, it is confirmed that MnO2 nanoparticles have a positive effect on the enhancement of the TE performance for cement composites. The 5wt.% graphite and 10wt.% MnO2 enhanced cement composite achieves the highest Z.T. of 6.2 × 10-6 at 350 K.« less
  3. Abstract: Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds Yb TM 2 Zn 20 ( TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor ( PF = 74 μW/cm-K 2 ; TM = Ir) and a high figure of merit ( ZT = 0.07; TMmore »= Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f -electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials.« less
  4. There has been a growing interest in solution-phase routes to thermoelectric materials due to the decreased costs and novel device architectures that these methods enable. Many excellent thermoelectric materials are metal chalcogenide semiconductors and the ability to create soluble metal chalcogenide semiconductor precursors using thiol–amine solvent mixtures was recently demonstrated by others. In this paper, we report the first thermoelectric property measurements on metal chalcogenide thin films made in this manner. We create Cu 2−x Se y S 1−y and Ag-doped Cu 2−x Se y S 1−y thin films and study the interrelationship between their composition and room temperature thermoelectricmore »properties. We find that the precursor annealing temperature affects the metal : chalcogen ratio, and leads to charge carrier concentration changes that affect the Seebeck coefficient and electrical conductivity. Increasing the Se : S ratio increases electrical conductivity and decreases the Seebeck coefficient. We also find that incorporating Ag into the Cu 2−x Se y S 1−y film leads to appreciable improvements in thermoelectric performance by increasing the Seebeck coefficient and decreasing thermal conductivity. Overall, we find that the room temperature thermoelectric properties of these solution-processed materials are comparable to measurements on Cu 2−x Se alloys made via conventional thermoelectric material processing methods. Achieving parity between solution-phase processing and conventional processing is an important milestone and demonstrates the promise of this binary solvent approach as a solution-phase route to thermoelectric materials.« less
  5. Thermoelectric materials could play a crucial role in the future of wearable electronic devices. They can continuously generate electricity from body heat. For efficient operation in wearable systems, in addition to a high thermoelectric figure of merit, zT, the thermoelectric material must have low thermal conductivity and a high Seebeck coefficient. In this study, we successfully synthesized high-performance nanocomposites of n-type Bi2Te2.7Se0.3, optimized especially for body heat harvesting and power generation applications. Different techniques such as dopant optimization, glass inclusion, microwave radiation in a single mode microwave cavity, and sintering conditions were used to optimize the temperature-dependent thermoelectric properties ofmore »Bi2Te2.7Se0.3. The effects of these techniques were studied and compared with each other. A room temperature thermal conductivity as low as 0.65 W/mK and high Seebeck coefficient of −297 μV/K were obtained for a wearable application, while maintaining a high thermoelectric figure of merit, zT, of 0.87 and an average zT of 0.82 over the entire temperature range of 25 °C to 225 °C, which makes the material appropriate for a variety of power generation applications.« less