skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change
Abstract Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor (OR) genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested. We combine comparative genomics and sensory morphology to test whether OR genes and olfactory phenotypic traits evolve at faster rates than other genes or traits. Using published genomes, we identified ORs in 21 tetrapods, including amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of orthologous non-OR protein-coding genes. We found that, for all clades investigated, most OR genes evolve nearly an order of magnitude faster than other protein-coding genes, with many OR genes showing signatures of diversifying selection across nearly all taxa in this study. This rapid rate of evolution suggests that chemoreceptor genes are in “evolutionary overdrive,” perhaps evolving in response to the ever-changing chemical space of the environment. To obtain complementary morphological data, we stained whole fixed specimens with iodine, µCT-scanned the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We then estimated phenotypic variation within traits and among tetrapods. While we found considerable variation in chemosensory structures, they were no more diverse than nonchemosensory regions. We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space, whereas chemosensory phenotypes and processing regions are more conserved because they use a standardized or constrained architecture to receive and process a range of chemical cues.  more » « less
Award ID(s):
1812035
PAR ID:
10253089
Author(s) / Creator(s):
; ; ;
Editor(s):
Muñoz, Martha
Date Published:
Journal Name:
Current Zoology
Volume:
66
Issue:
5
ISSN:
2396-9814
Page Range / eLocation ID:
505 to 514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant-visiting from an insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. If this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants — a potential ecological constraint on sensory evolution. 
    more » « less
  2. Animals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown. Here, we show that a wide range of states and stimuli converge upon a single Caenorhabditis elegans olfactory neuron to modulate food-seeking behavior. Using an unbiased ribotagging approach, we find that the expression of olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and stimuli, including feeding state, physiological stress, and recent sensory cues. We identify odorants that activate these state-dependent olfactory receptors and show that altered expression of these receptors influences food-seeking and foraging. Further, we dissect the molecular and neural circuit pathways through which external sensory information and internal nutritional state are integrated by AWA. This reveals a modular organization in which sensory and state-related signals arising from different cell types in the body converge on AWA and independently control chemoreceptor expression. The synthesis of these signals by AWA allows animals to generate sensorimotor responses that reflect the animal’s overall state. Our findings suggest a general model in which sensory- and state-dependent transcriptional changes at the sensory periphery modulate animals’ sensorimotor responses to meet their ongoing needs and states. 
    more » « less
  3. Chemosensory communication is essential to insect biology, playing indispensable roles during mate-finding, foraging, and oviposition behaviors. These traits are particularly important during speciation, where chemical perception may serve to establish species barriers. However, identifying genes associated with such complex behavioral traits remains a significant challenge. Through a combination of transcriptomic and genomic approaches, we characterize the genetic architecture of chemoperception and the role of chemosensing during speciation for a young species pair of Heliconius butterflies, Heliconius melpomene and Heliconius cydno . We provide a detailed description of chemosensory gene-expression profiles as they relate to sensory tissue (antennae, legs, and mouthparts), sex (male and female), and life stage (unmated and mated female butterflies). Our results untangle the potential role of chemical communication in establishing barriers during speciation and identify strong candidate genes for mate and host plant choice behaviors. Of the 252 chemosensory genes, HmOBP20 (involved in volatile detection) and HmGr56 (a putative synephrine-related receptor) emerge as strong candidates for divergence in pheromone detection and host plant discrimination, respectively. These two genes are not physically linked to wing-color pattern loci or other genomic regions associated with visual mate preference. Altogether, our results provide evidence for chemosensory divergence between H. melpomene and H. cydno , two rarely hybridizing butterflies with distinct mate and host plant preferences, a finding that supports a polygenic architecture of species boundaries. 
    more » « less
  4. Abstract Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands:Peromyscus maniculatus elususfrom Santa Barbara Island andP. m. santacruzaefrom Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein‐coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein‐coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy,Tlr2,Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28,Eif2ak4, Il12a,Syne1), aggression (Cyp19a,Lama2), and body size (Bc16,Syne1) exhibited non‐synonymous mutations predicted to have moderate to large effects. Variation in olfaction‐related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator‐recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein‐coding genes underlying phenotypes that promote success in those environments. 
    more » « less
  5. null (Ed.)
    Elevated rates of evolution in reproductive proteins are commonly observed in animal species, and are thought to be driven by the action of sexual selection and sexual conflict acting specifically on reproductive traits. Whether similar patterns are broadly observed in other biological groups is equivocal. Here, we examine patterns of protein divergence among wild tomato species ( Solanum section Lycopersicon ), to understand forces shaping the evolution of reproductive genes in this diverse, rapidly evolving plant clade. By comparing rates of molecular evolution among loci expressed in reproductive and non-reproductive tissues, our aims were to test if: (a) reproductive-specific loci evolve more rapidly, on average, than non-reproductive loci; (b) ‘male’-specific loci evolve at different rates than ‘female’-specific loci; (c) genes expressed exclusively in gametophytic (haploid) tissue evolve differently from genes expressed in sporophytic (diploid) tissue or in both tissue types; and (d) mating system variation (a potential proxy for the expected strength of sexual selection and/or sexual conflict) affects patterns of protein evolution. We observed elevated evolutionary rates in reproductive proteins. However, this pattern was most evident for female- rather than male-specific loci, both broadly and for individual loci inferred to be positively selected. These elevated rates might be facilitated by greater tissue-specificity of reproductive proteins, as faster rates were also associated with more narrow expression domains. In contrast, we found little evidence that evolutionary rates are consistently different in loci experiencing haploid selection (gametophytic-exclusive loci), or in lineages with quantitatively different mating systems. Overall while reproductive protein evolution is generally elevated in this diverse plant group, some specific patterns of evolution are more complex than those reported in other (largely animal) systems, and include a more prominent role for female-specific loci among adaptively evolving genes. 
    more » « less