skip to main content


Title: The five digits of the giraffe metatarsal
Abstract Evolution has shaped the limbs of hoofed animals in specific ways. In artiodactyls, it is the common assumption that the metatarsal is composed of the fusion of digits III and IV, whereas the other three digits have been lost or are highly reduced. However, evidence from the fossil record and internal morphology of the metatarsal challenges these assumptions. Furthermore, only a few taxonomic groups have been analysed. In giraffes, we discovered that all five digits are present in the adult metatarsal and are highly fused and modified rather than lost. We examined high-resolution micro-computed tomography scans of the metatarsals of two mid and late Miocene giraffid fossils and the extant giraffe and okapi. In all the Giraffidae analysed, we found a combination of four morphologies: (1) four articular facets; (2) four or, in most cases, five separate medullary cavities internally; (3) a clear, small digit I; and (4) in the two fossil taxa of unknown genus, the presence of external elongated grooves where the fusions of digits II and V have taken place. Giraffa and Okapia, the extant Giraffidae, show a difference from all the extinct taxa in having more flattened digits tightly packed together, suggesting convergent highly fused digits despite divergent ecologies and locomotion. These discoveries provide evidence that enhances our understanding of how bones fuse and call into question current hypotheses of digit loss.  more » « less
Award ID(s):
1812035
NSF-PAR ID:
10253092
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biological Journal of the Linnean Society
Volume:
131
Issue:
3
ISSN:
0024-4066
Page Range / eLocation ID:
699 to 705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The absence of preserved soft tissues in the fossil record is frequently a hindrance for palaeontologists wishing to investigate morphological shifts in key skeletal systems, such as the limbs. Understanding the soft tissue composition of modern species can aid in understanding changes in musculoskeletal features through evolution, including those pertaining to locomotion. Establishing anatomical differences in soft tissues utilising an extant phylogenetic bracket can, in turn, assist in interpreting morphological changes in hard tissues and modelling musculoskeletal movements during evolutionary transitions (e.g. digit reduction in perissodactyls). Perissodactyls (horses, rhinoceroses, tapirs and their relatives) are known to have originated with a four‐toed (tetradactyl) forelimb condition. Equids proceeded to reduce all but their central digit, resulting in monodactyly, whereas tapirs retained the ancestral tetradactyl state. The modern Malayan tapir (Tapirus indicus) has been shown to exhibit fully functional tetradactyly in its forelimb, more so than any other tapir, and represents an ideal case‐study for muscular arrangement and architectural comparison with the highly derived monodactylEquus. Here, we present the first quantification of muscular architecture of a tetradactyl perissodactyl (T. indicus), and compare it to measurements from modern monodactyl caballine horse (Equus ferus caballus). Each muscle of the tapir forelimb was dissected out from a cadaver and measured for architectural properties: muscle‐tendon unit (MTU) length, MTU mass, muscle mass, pennation angle, and resting fibre length. Comparative parameters [physiological cross‐sectional area (PCSA), muscle volume, and % muscle mass] were then calculated from the raw measurements. In the shoulder region, theinfraspinatusofT. indicusexhibits dual origination sites on either side of the deflected scapular spine. Within ungulates, this condition has only been previously reported in suids. Differences in relative contribution to limb muscle mass betweenT. indicusandEquushighlight forelimb muscles that affect mobility in the lateral and medial digits (e.g.extensor digitorum lateralis). These muscles were likely reduced in equids during their evolutionary transition from tetradactyl forest‐dwellers to monodactyl, open‐habitat specialists. Patterns of PCSA across the forelimb were similar betweenT. indicusandEquus, with the notable exceptions of thebiceps brachiiandflexor carpi ulnaris, which were much larger inEquus. The differences observed in PCSA between the tapir and horse forelimb muscles highlight muscles that are essential for maintaining stability in the monodactyl limb while moving at high speeds. This quantitative dataset of muscle architecture in a functionally tetradactyl perissodactyl is a pivotal first step towards reconstructing the locomotor capabilities of extinct, four‐toed ancestors of modern perissodactyls, and providing further insights into the equid locomotor transition.

     
    more » « less
  2. Synopsis Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylo- genetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co- occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications. 
    more » « less
  3. ABSTRACT

    Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life‐history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least‐inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260‐million‐year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. ‘juvenile’, ‘mature’) and provide routes for better clarity and cross‐study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method‐specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, ‘Ontogenetic Assessment’, be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well‐represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well‐constrained, empirically tested methods.

     
    more » « less
  4. Reynolds, Sally (Ed.)
    For many animals, migration is an important strategy for navigating seasonal bottlenecks in resource availability. In the savannas of eastern Africa, herds of grazing animals, including blue wildebeest (Connochaetes taurinus), Thomson's gazelle (Eudorcas thomsonii), and plains zebra (Equus quagga), travel hundreds of kilometers annually tracking suitable forage and water. However, we know nearly nothing about migration among the extinct species that often dominated Late Pleistocene communities. Using serially sampled 87Sr/86Sr and δ13C, we characterize the prehistoric movement and diet of the enigmatic wildebeest Rusingoryx atopocranion from two localities (Karungu and Rusinga Island) in the Lake Victoria Basin of western Kenya. We find clear evidence for migration in all four individuals studied, with three 87Sr/86Sr series demonstrating high-amplitude fluctuations and all falling outside the modeled isoscape 87Sr/86Sr ranges of the fossil localities from which they were recovered. This suggests that R. atopocranion exhibited migratory behavior comparable to that of its closest living relatives in the genus Connochaetes. Additionally, individuals show seasonally-variable δ13C, with a higher browse intake than modern and fossil eastern African alcelaphins indicating behavioral differences among extinct taxa otherwise unrecognized by comparison with extant related species. That this species was highly migratory aligns with its morphology matching that of an open grassland migrant: it had open-adapted postcranial morphology along with a unique cranial structure convergent with lambeosaurine dinosaurs for calling long distances. We further hypothesize that its migratory behavior may be linked to its extinction, as R. atopocranion disappears from the Lake Victoria Basin fossil sequence coincident with the refilling of Lake Victoria sometime after 36 ka, potentially impeding its past migratory routes. This study characterizes migration in an extinct eastern African species for the first time and shapes our ecological understanding of this unique bovid and the ecosystems in which Middle Stone Age humans lived. 
    more » « less
  5. Abstract Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus , Heterodon nasicus , Rhabdophis subminiatus ; Homalopsidae – Homalopsis buccata ; Lamprophiidae - Malpolon monspessulanus , Psammophis schokari , Psammophis subtaeniatus , Rhamphiophis oxyrhynchus ; and Viperidae – Bitis atropos , Pseudocerastes urarachnoides , Tropidolaeumus subannulatus , Vipera transcaucasiana . These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline. 
    more » « less