skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Chapter Two - Localized Relativistic Two-Component Methods for Ground and Excited State Calculations
Scientists are extending the computational application of relativistic methods to ever-increasing sizes of molecular systems. To this end, reduction of the computational cost of relativistic methods through modest approximations is a welcome effort. In this work, we review several localized two-component approximations and introduce a maximally localized variant. We also extend the focus of local relativistic approximations from the ground state to excited states. Benchmark calculations on both valence and core electron absorption spectra are carried out to analyze the error incurred by using the relativistic local approximations for excited state computations.  more » « less
Award ID(s):
1856210 1663636
PAR ID:
10253112
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual reports in computational chemistry
Volume:
16
ISSN:
1875-5232
Page Range / eLocation ID:
17-37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The environment may significantly affect molecular properties. Thus, it is desirable to account explicitly for these effects on the wave function and its derivatives, especially when the latter are evaluated with accurate methods, such as those belonging to coupled cluster (CC) theory. In this tutorial review, we discuss how to combine CC methods with the polarizable continuum model of solvation (PCM). We describe useful approximations that include the solvent response to the correlation and excited state equations while maintaining the computational cost comparable to in vacuo calculations. Although applied to PCM, the theoretical framework presented in this review is general and can be used with any polarizable embedding model. Representative applications of the CC‐PCM method to ground and excited state properties of solvated molecules are presented, and comparisons with experiment, and between the full and approximate schemes are discussed.

     
    more » « less
  2. X-ray absorption spectroscopy (XAS) is a powerful experimental technique to probe the local order in materials with core electron excitations. Experimental interpretation requires supporting theoretical calculations. For water, these calculations are very demanding and, to date, could only be done with major approximations that limited the accuracy of the calculated spectra. This prompted an intense debate on whether a substantial revision of the standard picture of tetrahedrally bonded water was necessary to improve the agreement of theory and experiment. Here, we report a first-principles calculation of the XAS of water that avoids the approximations of prior work, thanks to recent advances in electron excitation theory. The calculated XAS spectra, and their variation with changes of temperature and/or with isotope substitution, are in good quantitative agreement with experiments. The approach requires accurate quasiparticle wave functions beyond density functional theory approximations, accounts for the dynamics of quasiparticles, and includes dynamic screening as well as renormalization effects due to the continuum of valence-level excitations. The three features observed in the experimental spectra are unambiguously attributed to excitonic effects. The preedge feature is associated with a bound intramolecular exciton, the main-edge feature is associated with an exciton localized within the coordination shell of the excited molecule, and the postedge feature is delocalized over more distant neighbors, as expected for a resonant state. The three features probe the local order at short, intermediate, and longer range relative to the excited molecule. The calculated spectra are fully consistent with a standard tetrahedral picture of water. 
    more » « less
  3. Abstract

    The Hohenberg-Kohn theorem of density-functional theory establishes the existence of a bijection between the ground-state electron density and the external potential of a many-body system. This guarantees a one-to-one map from the electron density to all observables of interest including electronic excited-state energies. Time-Dependent Density-Functional Theory (TDDFT) provides one framework to resolve this map; however, the approximations inherent in practical TDDFT calculations, together with their computational expense, motivate finding a cheaper, more direct map for electronic excitations. Here, we show that determining density and energy functionals via machine learning allows the equations of TDDFT to be bypassed. The framework we introduce is used to perform the first excited-state molecular dynamics simulations with a machine-learned functional on malonaldehyde and correctly capture the kinetics of its excited-state intramolecular proton transfer, allowing insight into how mechanical constraints can be used to control the proton transfer reaction in this molecule. This development opens the door to using machine-learned functionals for highly efficient excited-state dynamics simulations.

     
    more » « less
  4. In this work, we propose a novel framework for large-scale Gaussian process (GP) modeling. Contrary to the global, and local approximations proposed in the literature to address the computational bottleneck with exact GP modeling, we employ a combined global-local approach in building the approximation. Our framework uses a subset-of-data approach where the subset is a union of a set of global points designed to capture the global trend in the data, and a set of local points specific to a given testing location to capture the local trend around the testing location. The correlation function is also modeled as a combination of a global, and a local kernel. The predictive performance of our framework, which we refer to as TwinGP, is comparable to the state-of-the-art GP modeling methods, but at a fraction of their computational cost. 
    more » « less
  5. Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order self-energy approximation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the overestimation of ΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation and relaxation contributions to the vertical core-excited state energies, the concept of local and nonlocal core orbitals, and the consequences of breaking symmetry are discussed. 
    more » « less