skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chapter Two - Localized Relativistic Two-Component Methods for Ground and Excited State Calculations
Scientists are extending the computational application of relativistic methods to ever-increasing sizes of molecular systems. To this end, reduction of the computational cost of relativistic methods through modest approximations is a welcome effort. In this work, we review several localized two-component approximations and introduce a maximally localized variant. We also extend the focus of local relativistic approximations from the ground state to excited states. Benchmark calculations on both valence and core electron absorption spectra are carried out to analyze the error incurred by using the relativistic local approximations for excited state computations.  more » « less
Award ID(s):
1856210 1663636
PAR ID:
10253112
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual reports in computational chemistry
Volume:
16
ISSN:
1875-5232
Page Range / eLocation ID:
17-37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. X-ray absorption spectroscopy (XAS) is a powerful experimental technique to probe the local order in materials with core electron excitations. Experimental interpretation requires supporting theoretical calculations. For water, these calculations are very demanding and, to date, could only be done with major approximations that limited the accuracy of the calculated spectra. This prompted an intense debate on whether a substantial revision of the standard picture of tetrahedrally bonded water was necessary to improve the agreement of theory and experiment. Here, we report a first-principles calculation of the XAS of water that avoids the approximations of prior work, thanks to recent advances in electron excitation theory. The calculated XAS spectra, and their variation with changes of temperature and/or with isotope substitution, are in good quantitative agreement with experiments. The approach requires accurate quasiparticle wave functions beyond density functional theory approximations, accounts for the dynamics of quasiparticles, and includes dynamic screening as well as renormalization effects due to the continuum of valence-level excitations. The three features observed in the experimental spectra are unambiguously attributed to excitonic effects. The preedge feature is associated with a bound intramolecular exciton, the main-edge feature is associated with an exciton localized within the coordination shell of the excited molecule, and the postedge feature is delocalized over more distant neighbors, as expected for a resonant state. The three features probe the local order at short, intermediate, and longer range relative to the excited molecule. The calculated spectra are fully consistent with a standard tetrahedral picture of water. 
    more » « less
  2. Abstract The environment may significantly affect molecular properties. Thus, it is desirable to account explicitly for these effects on the wave function and its derivatives, especially when the latter are evaluated with accurate methods, such as those belonging to coupled cluster (CC) theory. In this tutorial review, we discuss how to combine CC methods with the polarizable continuum model of solvation (PCM). We describe useful approximations that include the solvent response to the correlation and excited state equations while maintaining the computational cost comparable to in vacuo calculations. Although applied to PCM, the theoretical framework presented in this review is general and can be used with any polarizable embedding model. Representative applications of the CC‐PCM method to ground and excited state properties of solvated molecules are presented, and comparisons with experiment, and between the full and approximate schemes are discussed. 
    more » « less
  3. Proper theoretical descriptions of ground and excited states are critical for understanding molecular photophysics and photochemistry. Complex interactions in experimentally interesting molecular systems require multiple approximations of the underlying quantum mechanics to practically solve for various physical observables. While high-level calculations of small molecular systems provide very accurate excitation energies, this accuracy does not always extend to larger systems or other properties. Because of this, the “best” method to study new molecules is not always clear, leading many researchers to default to inexpensive and easy-to-use black-box methods. Unfortunately, even when these methods reproduce experimental excitation energies, it is not necessarily for the right reasons. Without accurate descriptions of the underlying physics, it becomes challenging to understand new classes of molecules. Consequently, predicted properties and their trends may not offer reliable mechanistic understanding. This review is targeted at beginners in computational chemistry who are interested in studying excited-state properties. A brief overview of common ground- and excited-state methods are covered for easy reference during the comparison of methods. The primary focus of this review is to compare the accuracy of these methods for several important classes of chromophores. The performance and accuracy of each method are explored to provide practitioners a road map on what methods work well for different molecular systems and identify further work that needs to be done in the field. 
    more » « less
  4. Spectroscopic techniques based on core-level excitations offer powerful tools for probing molecular and electronic structures with high spatial resolution. However, accurately calculating spectral features at the L or M edges is challenging due to the significant influence of spin–orbit and multiplet effects. While scalar-relativistic effects can be incorporated with minimal computational cost, accounting for spin–orbit interactions requires complex frameworks that can be computationally expensive. In this work, we develop a reduced-cost state-interaction approach for simulating near-edge soft x-ray absorption spectra of closed-shell transition metal complexes with relativistic effects incorporated using the ZORA-Kohn–Sham Hamiltonian. The computed spectra closely agree with those obtained with state-of-the-art approaches. This methodology provides a practical and cost-effective alternative to more rigorous two-component methods, making it particularly valuable for large-scale calculations and applications such as resonant inelastic x-ray scattering simulations, where capturing a large number of excited states is essential. 
    more » « less
  5. Abstract The Hohenberg-Kohn theorem of density-functional theory establishes the existence of a bijection between the ground-state electron density and the external potential of a many-body system. This guarantees a one-to-one map from the electron density to all observables of interest including electronic excited-state energies. Time-Dependent Density-Functional Theory (TDDFT) provides one framework to resolve this map; however, the approximations inherent in practical TDDFT calculations, together with their computational expense, motivate finding a cheaper, more direct map for electronic excitations. Here, we show that determining density and energy functionals via machine learning allows the equations of TDDFT to be bypassed. The framework we introduce is used to perform the first excited-state molecular dynamics simulations with a machine-learned functional on malonaldehyde and correctly capture the kinetics of its excited-state intramolecular proton transfer, allowing insight into how mechanical constraints can be used to control the proton transfer reaction in this molecule. This development opens the door to using machine-learned functionals for highly efficient excited-state dynamics simulations. 
    more » « less